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Expectation of a discrete random variable

® Buy lottery ticket every week, p = 1/10000, what is probability of winning at k" week?
X ~ Geo(p) P(X=k)=(1—-p)kt-pfork=1,2,...
® What is the average number of weeks to wait (expected) before winning?
= 1
EX) =Y k(- p) =2
k=1 P

because Y2 k- x71 =1/a-xp

DEFINITION. The expectation of a discrete random variable X taking
the values aq,ao, ... and with probability mass function p is the

number
EX]=> aPX =a) =) aip(a:).

® Expected value, mean value (weighted by probability of occurrence), center of gravity

See seeing-theory.brown.edu
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https://seeing-theory.brown.edu/basic-probability/index.html

Expected value may be infinite or may not exist!

® Fair coin: win 2% euros if first H appears at k' toss [St. Petersburg paradox]
» X with p.m.f. p(2K) =27 for k = 1,2,...
» p()isapm.f. since Yo, 27k=1 using Yoo ak = 1L for |a| < 1

» Expected win (fair value to enter the game):

E[X]:i2k~2_k:i1:oo
k=1

k=1
® Expectation does not exist when ), a;jp(a;) does not converge
X with p.m.f. p(2K) = p(—2K) =27k for k =2,3,...
E[X] =Y 2,2k .27k —2k. 27Ky =5~ (1 —1) = 0 wrong!
E[X] =Y 2,2k 27k =572 2k. 27k = o0 — 00 undefined
E[X] is finite if Y |aj|p(a;) < o0
In the case above, > 72, (|2K| - 27% + | — 2K . 27%) = o0
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https://en.wikipedia.org/wiki/St._Petersburg_paradox

Expectation of some other discrete distributions

® Expectation of some other discrete distributions

>

v

v

v

\4

X~ U(m,M) E[X] = (m+M)/2

O N e = et oo (M) = m+ (M —m)/2 = M
X~ Ber(p) E[X]=p

00-(1—p)+1l-p=p [Expectation may not belong to the support]
X ~ Bin(n,p) E[X]=n-p

O Because ...we'll see later

X ~ NBin(n,p) E[X]={£

1-p
O Because ...we'll see later

X ~ Poi(u) EX]=n
O Because, when n — oo: Bin(n, #/n) — Poi(f)
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Expectation of a continuous random variable

DEFINITION. The ezpectation of a continuous random variable X
with probability density function f is the number

E[X] :/j:cxf(x)dx.

® Expectation of some continuous distributions

> X~ U(e, )  E[X]=(a+p)/2
> X ~ Exp())  E[X] =1/

O Because [ xAe Mdx = [—e M (x + 1/A)}go =e%0+1/») [See Lesson 06]
> X~ N(p,0%)  EX]=n
O Because: ffoooxm}ﬁe_l P dx = p [T (x — ) re_%(%fdx =, _xu

= ,u—‘—affoooz\/%re_?}dz =pu
» X ~ Erl(n,A\) E[X]=r1/x
O Because ...we'll see later
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Expected value may not exists!

® Cauchy distribution (distribution of the ratio of two standard normals)

1
)=

> X1, Xo ~ N(0,1) i.id., X = Xy/Xo ~ Cau(0,1)

E[X] = / i xF (x)dx + /O " (x)dx

— 00

> f dx—[lﬂlog(l—l—x2)]0_ = —c0

o

> [ xf(x dX:[§|Og(1+X2)]go:OO
E[X]=-c0+ 0

* E[X]is finite if [ [x|f(x)dx < o0
Mean value does not ailways make sense in your data analytics project!
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Elg(X)] # g(E[X])

Recall that velocity = space/time, and then time = space/velocity!

Vector v of speed (Km/h) to reach school and probabilities p using feet, bike, bus, train:

v = c(5, 10, 20, 30) p = c(0.1, 0.4, 0.25, 0.25)

Distance house-schools is 2 Km

What is the average time to reach school?

» 2/sum(v*p) i.e., space/E[velocity], or
» sum(2/v*p) i.e., Efspace/velocity]

X = velocity, g(X) = 2/X time to reach school

> E[g(X)] # g(E[X])
» E[g(X)] mean time
» g(E[X]) time at mean velocity
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The change of variable formula (or rule of the lazy statistician)

® X ~ U(0,10), width of a square field, E[X] =5

® g(X) = X2 is the area of the field, E[g(X)] = ? [E[g(X)] # g(E[X])]

* Fo(a) =P(g(X) <a)=P(X < +/a) = Va/io for 0 < a <100

® Hence, f,(a) = dFe(3)/da = 1/20./a [later on, a general theorem]
100 ,7100

 Elg00I= 55 " o = 553 [ = o

[ ]

A more direct way: THE CHANGE-OF-VARIABLE FORMULA. Let X be a random variable,

and let g : R — R be a function.
If X is discrete, taking the values ay,aq, ..., then

Eg(X)] = g(a)P(X =a;).
i
If X is continuous, with probability density function f, then

Els(X)] = / (@) f() dx.

10 10
ElSOOI= 0 = [l =
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Change of units

Theorem (Change of units)

E[rX +s] = rE[X] +s

® Example: for Y = 1.8X + 32, we have E[Y] = 1.8E[X] + 32 [Celsius to Fahrenheit]

Corollary.
’ E[X —E[X]] = E[X]-E[X]=0

Theorem. Expectation minimizes the square error, i.e., for a € R:

EI(X — E[X])] < E[(X — a)’]

> Proof. (sketch) set & [* (x — a)?f(x)dx =0
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Computation with discrete random variables

For a discrete random variable X, the p.m.f. of Y = g(X) is:

Pe(Y=y)= > Px(X=x)= ) Px(X=x)

g(x)=y xeg—(y)

> Proof. {Y =y} ={g(X)=y}={xeg(y)}
Corollary (the change-of-variable formula):

Elg(X)] =) yPy(Y =y) = Zy D Px(X=x) = g(x)Px(X =x)
y g(x)=y
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X ~ U(1,200) number of tickets sold
® Capacity is 150
® Y = max{X — 150,0} overbooked tickets

Py(y — y) = { 190/200 ify =0 g 1(0) = {1,...,150}
VIE=Y)I= 1200 if1<y <50 g (y)={y+ 150}

® Hence:

E[Y]=0- ﬁ+% Zy*6375

or using the change-of-variable formula:

200 200

1
. X —150,0} = — - X —150) = 6.375

1
E[Y] = 5
x=151

200
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Computation with continuous random variables

For a continuous random variable X, the density functions of Y = g(X)
when g() is increasing/decreasing are:

» Proof. (for g() increasing) Since g() is invertible and g(x) < y iff x < g71(y):
Fy(y) = Py(g(X) <y) = Px(X < g7'()) = Fx(g7'(¥))
and then:

dg—(y)
dy

_dFy(y) _ dFx(g”'(y)) _ dFx(g~*(y)) dg*(y)

= fx(g™?!
dy dy dg 1 dy x(&7°(¥))

fy(y)

Exercise at home: show the case g() decreasing!
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Change of units

CHANGE-OF-UNITS TRANSFORMATION. Let X be a continuous ran-
dom variable with distribution function Fxy and probability density
function fy. If we change units to Y = rX + s for real numbers r > 0
and s, then

r T

By (y) = Fx <J7> and  fy(y) = fx (y* ) .

For X ~ N(,0?), how is Z = 1LX + =4 = XL distributed?
2

o f7(z) = ofx(oy +p) = A=e™d
® Hence, Z ~ N(0,1)
® In particular, for X ~ N(u,0?), we have: [See Lesson 08]

P(X <a)=P(Z <2y — o221t
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Example: A(u,o?)

Log-normal distribution Y = X for X ~ N(u,0?), i.e., log(Y) ~ N(u,c?)

e Y =g(X)=¢" dom(Y) =]0, oo
® g(x) = e is increasing, and g~ !(y) = log y, and dg;i;(y) = %
_ logy — 1 dg~(y) 1 1 logy—py2
Fy(y) = Fx(g (y)) = &(——+ fy(y) = £ = e 255
v(y) = Fx(g™(y)) = o(—_—) v(v) = fx(g7(v)) a0 N

o Elg(X)] = [ g(x)fx(x)dx = [ yfy(y)dy = ert"/

® Plausible and empirically adequate model for long-tailed distributions:

vV vy VvYy

length of comments in posts, dwell time reading online articles, length of chess games, ...
size of living tissue, number of hospitalized cases in epidemics, blood pressure, . ..
income of 97%-99% of the population, the number of citations, log of city size, ...
times to repair a maintainable system, size of audio-video files, amount of internet traffic per
unit time, ...

See R script
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Common distributions

® Probability distributions at Wikipedia
® Probability distributions in R

° @ C. Forbes, M. Evans,
N. Hastings, B. Peacock (2010)
Statistical Distributions, 4th Edition

Wiley

min X, Negative a=f=1 Beta-binomial
binomial (n,a,B)
(n, p)

-1 Hypergeometric
P= %8 (M, K)

a+f—

_—"p=MIN,n=K

Relationships among common distributions. Solid lines represent transformations and special
cases, dashed lines represent limits. Adapted from Leemis (1986). 15/25


https://en.wikipedia.org/wiki/List_of_probability_distributions
https://CRAN.R-project.org/view=Distributions

e X ~ U(0,1) radius  fx(x)=1 Fx(x)=x for x € [0,1]
e Y=g(X)=n-X? Support is [0, 7]

= mx? s | i “(y) = ') _ _1
® g(x) = mx* is increasing, and g~ '(y) = \/; and % yy o

Fy(y) = Fx(g7'(y)) = \E fr(y) = fx(g‘l(y))dg;ym = 2\;@

Do not lift distributions from a data column
to a derived column in your data analytics project!

See R script

® Notice that: g(E[X]) = /4 < E[g(X)] = fo x)dx = fo yfv(y)dy =

W\ﬂ
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Jensen’s inequality

JENSEN’S INEQUALITY. Let g be a convex function, and let X be
a random variable. Then

9(E[X]) <E[g(X)].

o () is convex if f(tx; + (1 — t)x) < tf(x1) + (1 — t)f(x2) for t € [0, 1]

J(x)

tf (z1) + (1= t)f (x2)

Stz + (1 —t)xa)

oy + (1 - tyrs
e if f”(x) > 0 then f() is convex, e.g., g(x) = mx? or g(x) = /x for x > 0

Corollary [T, Ex. 8.11]. For a concave function g, namely g”’(x) < 0: g(E[X]) > E[g(X)]
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Variance

® |nvestment A. P(X =450)=0.5 P(X =550)=05 E[X] =500
* Investment B. P(X =0) = 0.5 P(X =1000) =05 E[X] = 500

Spread around the mean is important!

Variance and standard deviations

The variance Var(X) of a random variable X is the number:
Var(X) = E[(X — E[X])?]

ox =/ Var(X) is called the standard deviation of X.

The standard deviation has the same dimension as E[X] (and as X)
For X discrete, Var(X) = ",(a; — E[X])?p(a;)

Investment A. Var(X) =502 and ox = 50

Investment B. Var(X) = 5002 and ox = 500
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® ForacR:

E[|X — al] < VE[(X — a)?]

» Apply Jensen's ineq. for g(y) = y? convex on the r.v. Y = |X — 4

® Median minimizes absolute deviation, i.e., for any a € R:

E[|X — mx[] < E[|X — al]

» Prove it! (for continuous functions) Hint: < |x| = x/|x|

® Maximum distance between expectation and median:

|EIX] = mx| < E[|X — mx[] < E[|X — E[X]|] < VE[(X — E[X])?] = ox

» Jensen's ineq. for g(y) = |y| convex on the r.v. Y = X — mx plus the two results above
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® For discrete r.v. X with p.m..f. p(): the values a such that p(a) is maximum, i.e.:

arg max p(a)
a

» Can be more than one, e.g., in Ber(0.5)

® For continuous r.v. X with d.f. f(): the values x such that f(x) is a local maximum, e.g.:

f'(x)=0 and f"(x)<0

» Notice: local maximum!
mode

median

® Unimodal distribution = that have only one mode

rp

mean 20/25



Variance

Var(X) = E[X?] — E[X]?

» Proof.
Var(X) = E[(X = E[X])(X — E[X])]
= E[X?+ E[X]* — 2XE[X]]
= E[X? + E[X]? — E[2XE[X]]
= E[X?] + E[X]? - 2E[X]E[X] = E[X?] — E[X]?
® E[X?]is called the second moment of X for continuous r.v.’s: [70 x2f(x)dx
Corollary.
Var(rX + s) = r*Var(X)
Prove it!

® Variance insensitive to shift s!
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Variance may be infinite or may not exist!

Standard deviation ox is a measure of the margin of error around a predicted value
» E.g., temperature “20 + 1.5"
An infinite or non-existent margin of error is no prediction at all.

® Variance may not exists!

» If expectation does not exist!
» Also in cases when expectation exists: we'll see later Power laws.

® Variance can be infinite

» Distributions have fat upper tails that decrease at an extremely slow rate.
» The slow decay of probability increases the odds of very extreme values (outliers)
» E.g., eX for X ~ Cau(0,1) o8 T L — [log-Cauchy distribution]

LC(1, 1) —

LC0,2) ——
06 LC(0, .5) 1

LC(1,.5)
0.4 &»

RANN |

0 1 2 3 4 22/25




Variance

® Variance of some discrete distributions

>

vy

v

v

v

X~ U(m M) E[X] =M ypr(x) = WMomily—1

O use Var(X) = Var(X — m), call n=M —m+1and 377 2 = (c=n2n=l)

X ~Ber(p) E[X]=p Var(X)=p*(1-p)+(1-p)’p=p(l-p)
X ~ Bin(n,p) E[X]=n-p Var(X)=np(l-p
O Because ...we'll see later
X~ Geo(p) E[X]=1 Var(X)=21£
O Hint: use Var(X) = E[X?] — E[X]? and 32, k* - x* 1 = s
X ~ NBin(n,p) E[X]={£& Var(X) = ntL

—p i
O Because ...we'll see later

X~ Poi(p) EX]=p Var(X)=pu
O Because, when n — oo: Bin(n, #/n) — Poi(f)

See seeing-theory.brown.edu
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https://seeing-theory.brown.edu/basic-probability/index.html

Variance

® Variance of some continuous distributions

» X~ U(a,B8)  EX]=(a+p)/2 Var(X)=(8-a)/12
O Prove it! Recall that f(x) = 1/(8-a)

» X~ Exp(\) E[X]=Yrx Var(X)=1Yx
O Prove it! Recall that f(x) = e ™

» X~ N(u,0?) E[X]=p Var(X)=o0?
O Prove it! Hint: use z = *># and integration by parts.

» X ~ Erl(n,\) E[X]=1/x Var(X)=1/x

O Because ...we'll see later
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E[] and Var() of random variables with bounded support

® Assume a < X < b, or more generally P(a< X < b)=1 [almost surely or a.s.]
® |t turns out that expectation and variance are finite!
(A) a<E[X]<b
» E.g., for X continuous, E[X] = fab xf(x)dx < fab bf (x)dx = b
(B) 0 < Var(X) < (6-2)"/a

Proof.
» From (A), since 0 < (X — E[X])?, we have 0 < E[(X — E[X])?] = Var(X)
» For any v € R, we have E[(X — E[X])?] < E[(X —7)?] [See slide 9]

O Thus, E[(X — E[X])?] = Var(X) < E[(X —7)%]
» For v = (a+b)/2, we have (X —v)? < (b —v)?, and then by (A):

(a+b) _ (b — a)?

Var(X) < E[(X = 7)) < (b—)* = (b— 22 = 2

* Exercise at home: show that the bound (b—2)°/4 can be reached for some distribution.
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