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Scaled distributions

• Many of the things that scientists measure have a typical size or “scale” — a typical
value around which individual measurements are centered
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Scale-free distributions

• But not all things we measure are peaked around a typical value. Some vary over an
enormous dynamic range.

Look at Figure 4 of Newman’s paper
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https://arxiv.org/pdf/cond-mat/0412004.pdf


Continuous power-law

Power-law
A continuous random variable X has the power-law distribution, if for
some α > 1 its density function is given by

p(x) = C · x−α for x ≥ xmin

We denote this distribution by Pow(xmin, α).

• C is called the intercept, and α the exponent.

• Passing to the logs:
log p(x) = −α · log(x) + logC

linearity in log-log scale plots!

See R script
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Scale-free distributions

p(bx) = g(b)p(x)

• Measuring in cm, inches, Km, or miles does not change the form of the distribution (up
to some constant)!

• For a power-law p(x) = Cx−α

p(bx) = b−αCx−α

hence, g(b) = b−α

• Actually, power-laws are the only scale-free distributions!
▶ see Eq. 30-34 of Newman’s paper for a proof
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https://arxiv.org/pdf/cond-mat/0412004.pdf


Intercept

• What is the constant C?

1 =

∫ ∞

xmin

C · x−αdx =
C

−α+ 1

[
x−α+1

]∞
xmin

(⋆)
=

C

−α+ 1

(
0− x−α+1

min

)
=

C

α− 1
x−α+1
min

(⋆) Finite only for α > 1, because:

lim
x→∞

x−α+1 = ∞ for α ≤ 1

• Therefore:
C = (α− 1)/x−α+1

min (1)

and, in summary:

p(x) =
(α− 1)

xmin

(
x

xmin

)−α
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CCDF

• Let’s compute:

P(X > x) =

∫ ∞

x
p(y)dy = C

∫ ∞

x
y−αdy =

C

−α+ 1

[
y−α+1

]∞
x

=
C

α− 1
x−α+1

and since C = (α− 1)/x−α+1
min :

P(X > x) =

(
x

xmin

)−α+1

=

(
x

xmin

)−(α−1)

• Same form as df (see Eq. 1 ) but with exponent (α− 1)

See R script
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Pareto distribution
• Vilfredo Pareto noticed that the number of people whose income exceeded level x (i.e.,
CCDF) is well approximated by C/xβ for some constants C and β > 0

▶ It appears that for all countries β ≈ 1.5.

Pareto distribution

A continuous random variable X has the Pareto distribution, if for
some β > 0 its density function is given by

p(x) = C · x−(β+1) for x ≥ xmin

We denote this distribution by Par(xmin, β).

• Par(xmin, β) = Pow(xmin, β + 1) or Pow(xmin, α) = Par(xmin, α− 1)
• CCDF of Par(xmin, β) is (

x
xmin

)−((β+1)−1) = ( x
xmin

)−β

See R script
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https://en.wikipedia.org/wiki/Vilfredo_Pareto


Expectation and variance of a power-law

• What is the expectation of X ∼ Pow(xmin, α)?

E [X ] =

∫ ∞

xmin

x · p(x)dx = C

∫ ∞

xmin

x−α+1dx =
C

−α+ 2

[
x−α+2

]∞
xmin

(⋆)
=

C

α− 2
x−α+2
min

(⋆) Finite only for α > 2, because:

lim
x→∞

x−α+2 = ∞ for α ≤ 2

and since C = (α− 1)/x−α+1
min :

E [X ] =
α− 1

α− 2
xmin

▶ For 1 < α ≤ 2, there is no expectation: the mean of a dataset has no reliable value!

• Var(X ) finite only for α > 3
▶ For 2 < α ≤ 3, there is no variance: the empirical variance of a dataset has no reliable value!
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Discrete power-law

Discrete power-law

A discrete random variable X has the power-law distribution, if for some
α > 1 its p.m.f. function is given by

p(k) = C · k−α for k = kmin, kmin + 1, . . .

We denote this distribution by Pow(kmin, α).

• Population of cities, number of books sold, number of citations, etc.
• Since 1 =

∑∞
k=kmin

C · k−α, we have

C =
1∑∞

k=kmin
k−α

=
1

ζ(α, kmin)

where ζ(α, kmin) =
∑∞

k=kmin
k−α [Hurwitz zeta-function]

• Special case: ζ(α) = ζ(α, 1) =
∑∞

k=1 k
−α [Riemann zeta-function]

See R script
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Logarithmic binning vs CCDF

See R script 11 / 14



Zipf’s law
Zipf’s law distribution

A discrete random variable R has the Zipf’s law distribution, if for some
α > 1 its p.m.f. function is given by

p(r) = C · r−α for r = 1, 2, . . . ,N

We denote this distribution by Zipf (α).

• Since
∑N

r=1 C · r−α = 1, we have:

C =
1∑N

r=1 r
−α

=
1

ζ(α)− ζ(α,N + 1)

• Read p(r) as the probability of an event based its rank
▶ e.g., prob. of occurrence of a word in a book given the word rank, prob. of occurrence of an

inhabitant of a city given the city rank
□ Contrast to discrete power laws: prob. of words with a given number of occurrences, prob. of

cities with a given number of inhabitants
▶ If V the total number of words/inhabitants, V · p(r) is the frequency/population of the

word/city of rank r . Alternatively, if v is the population of the city p(r) = v/V
See R script 12 / 14



Zipf’s law

Left: (rank-frequency plot) frequency of words based on rank [Zipf’s law]

Right: number of words with a given minimum frequency [CCDF of a Power-law]
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From power-law to Zipf’s law and vice-versa
• Ω = {ω1, . . . , ωN}, ωi is a city with ni inhabitants, for a total of N cities and V =

∑N
i=1 ni inhab.

• P1(ωi ) = 1/N and X (ωi ) = ni is the population of the city ωi

▶ e.g., X (ωTokyo) = 37, 115, 035 for the city of Tokyo (world’s most populated city)
▶ pX (k) = PX (X = k) = P1({ω ∈ Ω | X (ω) = k}) = fraction of cities with k inhabitants

• P2(ωi ) = ni/V and R(ωi ) = rank of the city ωi w.r.t. city population
▶ e.g., R(ωTokyo) = 1 for the city of Tokyo
▶ pR(r) = PR(R = r) = X (ωr -th)/V where ωr -th is the r th largest city

• Assume X ∼ Pow(xmin, α), where xmin is the smallest population of a city, e.g., xmin = 1
▶ P(X > k) ∝ k−(α−1), (prop. to the) fraction of cities with more than k inhabitants

[∝ reads “proportional to” up to multip./additive constants]
▶ N · k−(α−1), (prop. to the) number of cities with more than k inhabitants
▶ if X (ω) = k then R(ω) ∝ N · X (ω)−(α−1) + 1, where +1 to add ω itself
▶ In summary R(ω) ∝ X (ω)−(α−1), or, by inverting, X (ω) ∝ R(ω)−

1
α−1 , and then:

pR(r) = PR(R = r) =
X (ωr -th)

V
∝ X (ωr -th) ∝ r−β where β =

1

α− 1

i.e., R ∼ Zipf (β) (the r th most populated city has population proportional to r−β)
See R script 14 / 14

https://worldpopulationreview.com/world-cities

