Master Program in Data Science and Business Informatics Statistics for Data Science

Lesson 13 - Power laws and Zipf's law

Salvatore Ruggieri
Department of Computer Science
University of Pisa, Italy salvatore.ruggieri@unipi.it

Scaled distributions

- Many of the things that scientists measure have a typical size or "scale" - a typical value around which individual measurements are centered

Scale-free distributions

- But not all things we measure are peaked around a typical value. Some vary over an enormous dynamic range.

Look at Figure 4 of Newman's paper

Continuous power-law

Power-law

A continuous random variable X has the power-law distribution, if for some $\alpha>1$ its density function is given by

$$
p(x)=C \cdot x^{-\alpha} \quad \text { for } x \geq x_{\min }
$$

We denote this distribution by $\operatorname{Pow}\left(x_{\min }, \alpha\right)$.

- C is called the intercept, and α the exponent.
- Passing to the logs:

$$
\log p(x)=-\alpha \cdot \log (x)+\log C
$$

linearity in log-log scale plots!

See R script

Scale-free distributions

$$
p(b x)=g(b) p(x)
$$

- Measuring in cm , inches, Km , or miles does not change the form of the distribution (up to some constant)!
- For a power-law $p(x)=C x^{-\alpha}$

$$
p(b x)=b^{-\alpha} C x^{-\alpha}
$$

hence, $g(b)=b^{-\alpha}$

- Actually, power-laws are the only scale-free distributions!
- see Eq. 30-34 of Newman's paper for a proof

Intercept

- What is the constant C ?

$$
1=\int_{x_{\min }}^{\infty} C \cdot x^{-\alpha} d x=\frac{C}{-\alpha+1}\left[x^{-\alpha+1}\right]_{x_{\min }}^{\infty} \stackrel{(\star)}{=} \frac{C}{-\alpha+1}\left(0-x_{\min }^{-\alpha+1}\right)=\frac{C}{\alpha-1} x_{\min }^{-\alpha+1}
$$

(\star) Finite only for $\alpha>1$, because:

$$
\lim _{x \rightarrow \infty} x^{-\alpha+1}=\infty \text { for } \alpha \leq 1
$$

- Therefore:

$$
\begin{equation*}
C=(\alpha-1) / x_{\min }^{-\alpha+1} \tag{1}
\end{equation*}
$$

and, in summary:

$$
p(x)=\frac{(\alpha-1)}{x_{\min }}\left(\frac{x}{x_{\min }}\right)^{-\alpha}
$$

CCDF

- Let's compute:

$$
P(X>x)=\int_{x}^{\infty} p(y) d y=C \int_{x}^{\infty} y^{-\alpha} d y=\frac{C}{-\alpha+1}\left[y^{-\alpha+1}\right]_{x}^{\infty}=\frac{C}{\alpha-1} x^{-\alpha+1}
$$

and since $C=(\alpha-1) / x_{\text {min }}^{-\alpha+1}$:

$$
P(X>x)=\left(\frac{x}{x_{\min }}\right)^{-\alpha+1}=\left(\frac{x}{x_{\min }}\right)^{-(\alpha-1)}
$$

- Same form as df (see Eq. 1) but with exponent ($\alpha-1$)

See R script

Pareto distribution

- Vilfredo Pareto noticed that the number of people whose income exceeded level x (i.e., CCDF) is well approximated by C / x^{β} for some constants C and $\beta>0$
- It appears that for all countries $\beta \approx 1.5$.

Pareto distribution

A continuous random variable X has the Pareto distribution, if for some $\beta>0$ its density function is given by

$$
p(x)=C \cdot x^{-(\beta+1)} \quad \text { for } x \geq x_{\min }
$$

We denote this distribution by $\operatorname{Par}\left(x_{\min }, \beta\right)$.

- $\operatorname{Par}\left(x_{\min }, \beta\right)=\operatorname{Pow}\left(x_{\text {min }}, \beta+1\right)$ or $\operatorname{Pow}\left(x_{\min }, \alpha\right)=\operatorname{Par}\left(x_{\min }, \alpha-1\right)$
- CCDF of $\operatorname{Par}\left(x_{\min }, \beta\right)$ is $\left(\frac{x}{x_{\text {min }}}\right)^{-((\beta+1)-1)}=\left(\frac{x}{x_{\text {min }}}\right)^{-\beta}$

Expectation and variance of a power-law

- What is the expectation of $X \sim \operatorname{Pow}\left(x_{\min }, \alpha\right)$?

$$
E[X]=\int_{x_{\min }}^{\infty} x \cdot p(x) d x=C \int_{x_{\min }}^{\infty} x^{-\alpha+1} d x=\frac{C}{-\alpha+2}\left[x^{-\alpha+2}\right]_{x_{\min }}^{\infty} \stackrel{(\star)}{=} \frac{C}{\alpha-2} x_{\min }^{-\alpha+2}
$$

(\star) Finite only for $\alpha>2$, because:

$$
\lim _{x \rightarrow \infty} x^{-\alpha+2}=\infty \text { for } \alpha \leq 2
$$

and since $C=(\alpha-1) / x_{\min }^{-\alpha+1}$:

$$
E[X]=\frac{\alpha-1}{\alpha-2} x_{\min }
$$

- For $1<\alpha \leq 2$, there is no expectation: the mean of a dataset has no reliable value!
- $\operatorname{Var}(X)$ finite only for $\alpha>3$
- For $2<\alpha \leq 3$, there is no variance: the empirical variance of a dataset has no reliable value!

Discrete power-law

Discrete power-law

A discrete random variable X has the power-law distribution, if for some $\alpha>1$ its p.m.f. function is given by

$$
p(k)=C \cdot k^{-\alpha} \quad \text { for } k=k_{\min }, k_{\min }+1, \ldots
$$

We denote this distribution by $\operatorname{Pow}\left(k_{\text {min }}, \alpha\right)$.

- Population of cities, number of books sold, number of citations, etc.
- Since $1=\sum_{k=k_{\text {min }}}^{\infty} C \cdot k^{-\alpha}$, we have

$$
C=\frac{1}{\sum_{k=k_{\min }}^{\infty} k^{-\alpha}}=\frac{1}{\zeta\left(\alpha, k_{\min }\right)}
$$

where $\zeta\left(\alpha, k_{\text {min }}\right)=\sum_{k=k_{\text {min }}}^{\infty} k^{-\alpha}$

- Special case: $\zeta(\alpha)=\zeta(\alpha, 1)=\sum_{k=1}^{\infty} k^{-\alpha}$
[Hurwitz zeta-function]
[Riemann zeta-function]

Logarithmic binning vs CCDF

See R script

Zipf's law

Zipf's law distribution

A discrete random variable R has the Zipf's law distribution, if for some $\alpha>1$ its p.m.f. function is given by

$$
p(r)=C \cdot r^{-\alpha} \quad \text { for } r=1,2, \ldots, N
$$

We denote this distribution by $\operatorname{Zipf}(\alpha)$.

- Since $\sum_{r=1}^{N} C \cdot r^{-\alpha}=1$, we have:

$$
C=\frac{1}{\sum_{r=1}^{N} r^{-\alpha}}=\frac{1}{\zeta(\alpha)-\zeta(\alpha, N+1)}
$$

- Read $p(r)$ as the probability of an event based its rank
- e.g., prob. of occurrence of a word in a book given the word rank, prob. of occurrence of an inhabitant of a city given the city rank
- Contrast to discrete power laws: prob. of words with a given number of occurrences, prob. of cities with a given number of inhabitants
- If V the total number of words/inhabitants, $V \cdot p(r)$ is the frequency/population of the word/city of rank r. Alternatively, if v is the population of the city $p(r)=v / v$

Zipf's law

Left: (rank-frequency plot) frequency of words based on rank
Right: number of words with a given minimum frequency
[Zipf's law]
[CCDF of a Power-law]

From power-law to Zipf's law and vice-versa

- $\Omega=\left\{\omega_{1}, \ldots, \omega_{N}\right\}, \omega_{i}$ is a city with n_{i} inhabitants, for a total of N cities and $V=\sum_{i=1}^{N} n_{i}$ inhab.
- $P_{1}\left(\omega_{i}\right)=1 / N$ and $X\left(\omega_{i}\right)=n_{i}$ is the population of the city ω_{i}
- e.g., $X\left(\omega_{\text {Tokyo }}\right)=37,115,035$ for the city of Tokyo (world's most populated city)
- $p_{X}(k)=P_{X}(X=k)=P_{1}(\{\omega \in \Omega \mid X(\omega)=k\})=$ fraction of cities with k inhabitants
- $P_{2}\left(\omega_{i}\right)=n_{i} / V$ and $R\left(\omega_{i}\right)=$ rank of the city ω_{i} w.r.t. city population
- e.g., $R\left(\omega_{\text {Tokyo }}\right)=1$ for the city of Tokyo
- $p_{R}(r)=P_{R}(R=r)=X\left(\omega_{r-t h}\right) / V$ where $\omega_{r-t h}$ is the $r^{\text {th }}$ largest city
- Assume $X \sim \operatorname{Pow}\left(x_{\min }, \alpha\right)$, where $x_{\min }$ is the smallest population of a city, e.g., $x_{\min }=1$
- $P(X>k) \propto k^{-(\alpha-1)}$, (prop. to the) fraction of cities with more than k inhabitants [\propto reads "proportional to" up to multip./additive constants]
- $N \cdot k^{-(\alpha-1)}$, (prop. to the) number of cities with more than k inhabitants
- if $X(\omega)=k$ then $R(\omega) \propto N \cdot X(\omega)^{-(\alpha-1)}+1$, where +1 to add ω itself
- In summary $R(\omega) \propto X(\omega)^{-(\alpha-1)}$, or, by inverting, $X(\omega) \propto R(\omega)^{-\frac{1}{\alpha-1}}$, and then:

$$
p_{R}(r)=P_{R}(R=r)=\frac{X\left(\omega_{r-t h}\right)}{V} \propto X\left(\omega_{r-t h}\right) \propto r^{-\beta} \quad \text { where } \beta=\frac{1}{\alpha-1}
$$

i.e., $R \sim \operatorname{Zipf}(\beta)$ (the $r^{\text {th }}$ most populated city has population proportional to $r^{-\beta}$)

