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Markov's inequality

1 if p(x)

Notation. Indicator function: 1 = :
otation. Indicator function: 1.,(x) { 0 othorwise

» Link expectation to probability of events
> E[lx>a] =32, Ix>a(a)px(a) = 20,54 Px(a) = Px(X = a)

® Question: how much probability mass is near the expectation?

Markov'’s inequality. Assume X >0, and o > O:
_ElX

P(X > «) o

Proof. Take expectations of alx>, < X. O
® Foranon-negative r.v., the probability of a large value is inversely proportional to the value

Corollary. Assume X >0, E[X] > 0 and k > 0. We have: P(X > kE[X]) <
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Chebyshev's inequality

® Question: how much probability mass is near the expectation?

CHEBYSHEV'S INEQUALITY. For an arbitrary random variable Y
and any a > 0:

P([Y —E[Y]|>a) < al—QVar(Y) .

Proof. Let X = (Y — E[Y])? and a = a%. By Markov's inequality:

EIY BV 1)

P(Y — E[Y]| > a) = P((Y — E[Y])? > &) < 2
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Chebyshev's inequality

o “y + afew ¢” rule: Most of the probability mass of a random variable is within a few
standard deviations from its expectation!

® let u=E[Y] and 02 = Var(Y) > 0. For k > 0 (and hence a = ko > 0):

1 1
P(|Y —p| < ko) =1-P(]Y — p Zka)zl——k%zVar(Y):l—ﬁ
® For k =2,3,4, the RHS is 3/4,8/9,15/16

® Chebyshev's inequality is sharp when nothing is known about X, but in general it is a
large bound!

See R script
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Averages vary less

® Guessing the weight of a cow

Penelope The Cow

¢ See Francis Galton (inventor of standard deviation, regression, and much more)
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Expectation and variance of an average

® Let Xq,Xa,...,X, be independent r. v. for which E[X;] = p and Var(X;) = o2

X :X1+X2+...+Xn

n
n

EXPECTATION AND VARIANCE OF AN AVERAGE. If X, is the average
of n independent random variables with the same expectation p and
variance o2, then

_ _ 02
E [Xn] =p  and Var(Xn) = —.

n

® Notice that Xi, ..., X, are not required to be identically distributed!
See R script
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The (weak) law of large numbers

e Apply Chebyshev's inequality to X,

P(|X L Var(X) = &
(I n—ﬂ\>€)§€7 ar( n)—p

® For n — o0, @°/(n?) — 0
THE LAW OF LARGE NUMBERS. If X, is the average of n independent
random variables with expectation x and variance o, then for any
e>0: _
lim P(|X,, —p| >¢) =0.
n—oo
e probability that X, is far from y tends to 0 as n — ool [Convergence in probability]
® It holds also if o2 is infinite (proof not included)
°

Notice (again!) that Xi,..., X, are not required to be identically distributed!
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Recovering probability of an event

Objective: We want to know p = P(a < X < b)
® Run n independent measurements

® Model the results as Xi, ..., X, random variables
® Define the indicator variables, for i=1,... n:
1 ifa<X;i<b
Yi=Tacxi<b = { 0 otherwise
® Y,'s are independent [by propagation of independence, see Lesson 10]
[ ]

E[Y;]=P(a< X < b)=pand Var(Y;) = p(1 - p)
Defined Y, = Y1t=tYe by the law of large numbers:

lim P(|Y,—p| >€¢)=0

n—oo

Frequency counting of values (a, b] (e.g., in histograms) is a prob. estimation method!
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Estimating conditional probability

Objective: estimate p=P(C =c|/A=a)=P(A=a,C =c)/P(A=a) = pac/pa
® Run n independent measurement

Model the results as (A1, C1), ..., (An, Cp)

Using the approach of previous slide (but with the strong LLN):

> for i = La—ac—c: P(limpsoe Yo = pac) = 1 where p,c = P(A=a,C = c)
> for Z; = 1a—a P(limpsoo Zn = pa) = 1 where p, = P(A=a)

e if Z, # 0, from previous two statements: (limit of a ratio is the ratio of the limits)
Y,
P(lim =" =Py
n—00 Zp, Pc

Sample usage: almost everywhere in Machine Learning
Issues when n is small
> e.g., in target encoding of rare categorical values [Micci-Barreca, 2001]

See R script
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Hoeffding bound

Theorem (Hoeffding bound)

If X, is the average of n independent r.v. with expectation  and
P(a < X; < b) =1, then for any € > 0

P(IXn — | > €) < 267 /6=

® For bounded support, a tight upper bound!
® When a=0,b =1 (e.g., Bernoulli trials):

e Other concentration inequalities.
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The central limit theorem

® Let Xq,Xa,...,X, be independent r. v. for which E[X;] = p and Var(X;) = o2

R R I 2
A “; T ER] = Var(Xy) = =

e Can we derive the distribution of X,?

® Assume Xi,..., X, ~ N(u,0?) with i and o known. We have:

c g Xn_ﬂ
X"NN(:LL77) Zn:o’/\/ﬁ

® |nterestingly, the same conclusion extends to any other distribution!

~ N(0,1)
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The central limit theorem

THE CENTRAL LIMIT THEOREM. Let Xi,Xs,... be any sequence
of independent identically distributed random variables with finite
positive variance. Let p be the expected value and o2 the variance
of each of the X;. For n > 1, let Z,, be defined by

X, — .
—

Zn =0
then for any number a

lim Fy, (a) = ®(a),

n—00

where @ is the distribution function of the N(0,1) distribution. In
words: the distribution function of Z,, converges to the distribution
function ® of the standard normal distribution.

® |t extends to not identically distributed r.v.’s [Lindeberg’s condition]
® Why is it so frequent to observe a normal distribution?

» Sometime it is the average/sum effects of other variables, e.g., as in “noise”

» This justifies the common use of it to stand in for the effects of unobserved variables

See R script and seeing-theory.brown.edu
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https://en.wikipedia.org/wiki/Lindeberg%27s_condition
https://seeing-theory.brown.edu/probability-distributions/index.html#section3

Applications: approximating probabilities

Let Xi,..., X, ~ Exp(2), for n =100 p=oc =12

Assume to observe realizations xi, ..., x, such that x, = %27:1 x; = 0.6

What is the probability P(X, > 0.6) of observing such a value or a greater value?
Option A: Compute the distribution of X,

Sp=Xi+ ...+ X, ~ Erl(n,2)

X, = Sn/n hence by change-of-units transformation [See Lesson 09]
F)-(n(x) = Fs,(n-x) and f)"(,,(x) =n-fs,(n-x)

and then:

P(X,>0.6) =1— Fg (0.6) =1— Fs,(n-0.6) = 1 — pganma(60, n, 2) = 0.0279
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Applications: approximating probabilities

Let Xi,..., X, ~ Exp(2), for n =100

p=o =12

Assume to observe realizations xi, ..., x, such that x, = %Z,’-’:l x; = 0.6
What is the probability P(X, > 0.6) of observing such a value or a greater value?

Option B: Approximate them by using the CLT (requires p and o)

Since Z, = )E’}_fi‘ ~ N(0,1) for n — oc:

X,—p _ 06—p 0.6 —0.5

P(X, > 0.6) = P( >

U/\/ﬁ U/W):P(an

0.5/10

also, notice X1 + ...+ X, = \/noZ, + nu ~ N(nu, no?)
See R script

Y~ 1-—

®(2) = 0.0228
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How large should n be?

® How fast is the convergence of Z, to N(0,1)?
® The approximation might be poor when:

» nis small the myth of n > 30
» X; is asymmetric, bimodal, or discrete
» the value to test (0.6 in our example) is far from p
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https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/34906.pdf

Optional reference

Target encoding of categorical features.

D Daniele Micci-Barreca (2001)
A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction
Problems
SIGKDD Explor. Newsl. 3 (1), 27 — 32.
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