Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 16 - Numerical summaries

Salvatore Ruggieri
Department of Computer Science
University of Pisa, Italy salvatore.ruggieri@unipi.it

Condensed observations: numerical summaries

- Probability models governs some random phenomena
- Confronted with a new phenomenon, we want to learn about the randomness associated with it
- Parametric (efficient) vs non-parameteric (general) methods
- Record observations x_{1}, \ldots, x_{n} (a dataset)
- n can be large: need to condense for easy comprehension and processing
- Numerical summaries:
- Univariate: sample/empirical mean, median, standard deviation, quantiles, MAD
- Multi-variate: Pearson's, Spearman's, Kendall's correlation coefficients

Sample summaries

Main idea (plug-in method): translate summaries of empirical distribution F_{n} of a sample of realizations to estimate summaries of the generating distribution F

- Sample mean:

$$
\bar{x}_{n}=\frac{x_{1}+\ldots+x_{n}}{n}
$$

$$
E[X], \mu
$$

- Median for sorted x_{1}, \ldots, x_{n} :

$$
\operatorname{Med}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}x_{\frac{(n+1)}{}} & \text { if } n \text { is odd } \\ \left(x_{\frac{n}{2}}+x_{\frac{n}{2}+1}\right) / 2 & \text { if } n \text { is even }\end{cases}
$$

$$
F^{-1}(0.5)
$$

E.g., $\operatorname{Med}(2,3,4)=3$ and $\operatorname{Med}(2,3,4,5)=3.5$

Measures of variability

- Sample variance:

$$
s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-n \cdot \bar{x}_{n}^{2}\right)
$$

$$
\operatorname{Var}(X), \sigma^{2}
$$

Divide by $n-1$ for a sample, and by n for a population!

- Sample standard deviation:

$$
s_{n}=\sqrt{s_{n}^{2}}
$$

$$
\sqrt{\operatorname{Var}(X)}, \sigma
$$

- Median of absolute deviations (MAD):

$$
\operatorname{MAD}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Med}\left(\left|x_{1}-\operatorname{Med}\left(x_{1}, \ldots, x_{n}\right)\right|, \ldots,\left|x_{n}-\operatorname{Med}\left(x_{1}, \ldots, x_{n}\right)\right|\right)
$$

- For $X \sim F$, the population MAD is $M d=G^{-1}(0.5)$ where $\left|X-F^{-1}(0.5)\right| \sim G$
- For F symmetric, $M d=F^{-1}(0.75)-F^{-1}(0.5)$.
- Md is a more robust-to-outlier measure of scale than standard deviation

Order statistics and empirical quantiles

- Let $x_{\langle 1\rangle}, \ldots, x_{\langle n\rangle}$ be sort $\left(x_{1}, \ldots, x_{n}\right)$. We call $x_{\langle i\rangle}$ the i-th order statistics.
- The order statistics consist of the same elements in the dataset, but in ascending order
- Distribution quantiles $q_{p}=\inf _{x}\{P(X \leq x) \geq p\}=\inf _{x}\{F(x) \geq p\}$
[See Lesson 08]
- Empirical quantiles: $q(p)=\inf _{x}\left\{F_{n}(x) \geq p\right\}=\inf _{x}\left\{\left|\left\{i \mid x_{i} \leq x\right\}\right| / n \geq p\right\}$
- Type 6 (book [T]): for $p=i /(n+1) \quad$ [There are 9 variants, see help(quantile)]

$$
q(p)=x_{\langle p \cdot(n+1)\rangle}=x_{\langle i\rangle}
$$

\square E.g., for $2,3,4,5,6, q(.167)=2, q(.333)=3, q(0.5)=4, q(0.667)=5, q(.833)=6$

- Type 7 (default in R): for $p=(i-1) /(n-1)$

$$
q(p)=x_{\langle p \cdot(n-1)+1\rangle}=x_{\langle i\rangle}
$$

\square E.g., for $2,3,4,5,6, q(0)=2, q(0.25)=3, q(0.5)=4, q(0.75)=5, q(1)=6$

- What is $q(p)$ when $p \cdot(n+1)$ is not an integer?

$$
q(p)=x_{\langle k\rangle}+\alpha\left(x_{\langle k+1\rangle}-x_{\langle k\rangle}\right)
$$

where $k=\lfloor p \cdot(n+1)\rfloor$ and $\alpha=p \cdot(n+1)-k$ (remainder)

The box-and-whisker plot

- Axis here is with reference to a standard Normal distribution
- See John Tukey (designed FFT, coined 'bit' \& 'software', and visionary of data science)

See R script

Association and correlation

- Bivariate analysis of joint distribution of X and Y or of a sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Association: one variable provides information on the other
- $X \Perp Y$ independent, i.e., $P(X \mid Y)=P(X)$: zero information
- $Y=f(X)$ deterministic association with f invertible: maximum information
- Correlation: the two variables show an increasing/decreasing trend
- $X \Perp Y$ implies $\operatorname{Cov}(X, Y)=0$
- the converse is not always true
- Coefficient or measure of association/correlation: determine the strength of association/correlation between two variables and the direction of the relationship

Measures of association

	Variable X		
Variable Y	Nominal	Ordinal	Continuous
Nominal	φ or λ	Rank biserial	Point biserial
Ordinal	Rank biserial	τ_{b} or Spearman	τ_{b} or Spearman
Continuous	Point biserial	τ_{b} or Spearman	Pearson or Spearman

$$
\begin{aligned}
& \varphi=\text { phi coefficient, } \lambda=\text { Goodman and Kruskal's lambda, } \\
& \tau_{\mathrm{b}}=\text { Kendall's } \tau_{\mathrm{b}} \text {. }
\end{aligned}
$$

- Dimension: level of measurement
- Ordinal: discrete but ordered, e.g., $0,1,2$ for "low", "medium", "severe" risks
- Nominal: discrete without any order, e.g., $0,1,2$ for "bus", "car", "train" transportation
- See [Khamis, 2008] for a guide to the selection
- See [Berry et al., 2018] for extensive introduction
- See mhahsler.github.io for a list of measures in association rule mining $X \Rightarrow Y$

Linear correlation of continuous r.v.: Pearson's r

- Bivariate analysis of joint distribution of X and Y or of a sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Sample covariance:

$$
s_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right) \quad \operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right) \cdot\left(Y-\mu_{Y}\right)\right]
$$

- Apply plug-in method to correlation between X and Y :

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}=\frac{E\left[\left(X-\mu_{X}\right) \cdot\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \cdot \sigma_{Y}}
$$

- Pearson's (linear/product-moment) correlation coefficient:

$$
r=\frac{s_{x y}}{s_{x} \cdot s_{y}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \cdot \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

- Support in $[-1,1]$ due to e Cauchy-Schwarz's inequality: $\left|s_{x y}\right| \leq s_{x} \cdot s_{y}$
- Computational cost is $O(n)$

Linear correlation of continuous r.v.: Pearson's r

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}=\frac{E\left[\left(X-\mu_{X}\right) \cdot\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \cdot \sigma_{Y}}
$$

- Pearson's (linear/product-moment) correlation coefficient:
[support in $[-1,1]$]

$$
r=\frac{s_{x y}}{s_{x} \cdot s_{y}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \cdot \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

Uncorrelated

Positively correlated

Negatively correlated

r	Interpretation of Linear Relationship
0.8	Strong positive
0.5	Moderate positive
0.2	Weak positive
0.0	No relationship
-0.2	Weak negative
-0.5	Moderate negative
-0.8	Strong negative

Rank correlation of continuous/ordinal r.v.: Spearman's ρ

- Pearsons's r asseses linear relationships over continuous values
- Let $\operatorname{rank}(x)$ be the ranks of x_{i} 's (position in the ordered sequence)
- For $x=7,3,5, \operatorname{rank}(x)=3,1,2$
- Spearman's correlation coefficient is the Pearson's coefficient over the ranks:

$$
\rho=r(\operatorname{rank}(x), \operatorname{rank}(y)) \quad \frac{\operatorname{Cov}(\operatorname{rank}(X), \operatorname{rank}(Y))}{\sqrt{\operatorname{Var}(\operatorname{rank}(X)) \cdot \operatorname{Var}(\operatorname{rank}(Y))}}
$$

- In case of no ties in x and y :

$$
\rho=1-\frac{6 \sum_{i=1}^{n}\left(\operatorname{rank}(x)_{i}-\operatorname{rank}(y)_{i}\right)^{2}}{n \cdot\left(n^{2}-1\right)}
$$

- Spearman's correlation assesses monotonic relationships (whether linear or not)
- Computational cost is $O(n \cdot \log n)$

Rank correlation of continuous/ordinal r.v.: Kendall's τ

- Spearman's applies when Y (or also X) is ordinal
- E.g., association between age and education level ("high-school", "bachelor", "master", ...)
- Kendall's τ_{a} is another (more robust) rank measure:
$\tau_{x y}=\frac{2 \sum_{i<j} \operatorname{sgn}\left(x_{i}-x_{j}\right) \cdot \operatorname{sgn}\left(y_{i}-y_{j}\right)}{n \cdot(n-1)} \quad E_{X_{1}, X_{2} \sim F_{X}, Y_{1}, Y_{2} \sim F_{Y}}\left[\operatorname{sgn}\left(X_{1}-X_{2}\right) \cdot \operatorname{sgn}\left(Y_{1}-Y_{2}\right)\right]$
Fraction of concordant pairs minus discordant pairs, i.e., probability of observing a difference between concordant and discordant pairs.
- Correction τ_{b} accounting for ties, i.e., $x_{i}=x_{j}$ or $y_{i}=y_{j} \quad$ [implemented by cor in R]
- Correction to divide by the number of pairs for which $\operatorname{sgn}\left(x_{i}-x_{j}\right) \cdot \operatorname{sgn}\left(y_{i}-y_{j}\right) \neq 0$
- Computational cost is $O\left(n^{2}\right)$

> See R script

Rank correlation of continuous and binary r.v.: Somers' D

- X continuous and Y binary.
- An asymmetric Kendall's:

$$
D=\frac{\tau_{x y}}{\tau_{y y}}=\frac{\sum_{i<j} \operatorname{sgn}\left(x_{i}-x_{j}\right) \cdot \operatorname{sgn}\left(y_{i}-y_{j}\right)}{\sum_{i<j} \operatorname{sgn}\left(y_{i}-y_{j}\right)^{2}}
$$

i.e., fraction of concordand pairs minus discordant pairs conditional to unequal values of y

- Example with probabilistic classifiers
[More in future lessons]
- $x=$ positive prediction confidence, i.e., predict_proba(...)[,1] in Python
- y true class
- D is the Gini index of classifier performances
- related to AUC of ROC curve:

$$
D=2 \cdot A U C-1 \quad A \cup C=\frac{D}{2}+0.5=\frac{\tau_{x y}}{2 \cdot \tau_{y y}}+0.5
$$

See R script

CAP Curves

....... Scoring1 ----• Scoring2 —— Random Scoring ----- Perfect Forescaster
ROC Curves

Gini $=D=A /(A+B)$
$A U C=A+1 / 2$

Association between nominal variables: Thiel's U

- Recall from Lesson 11

Mutual information and NMI

$$
I(X, Y)=\sum_{a, b} p_{X Y}(a, b) \log \frac{p_{X Y}(a, b)}{p_{X}(a) p_{Y}(b)} \quad N M I=\frac{I(X, Y)}{\min \{H(X), H(Y)\}} \in[0,1]
$$

- Uncertainty coefficient (also called entropy coefficient or Thiel's U) :

$$
U_{\text {sym }}=\frac{I(X, Y)}{(H(X)+H(Y)) / 2} \quad U_{\text {asym }}=\frac{I(X, Y)}{H(X)}
$$

where $p_{X Y}$ is the empirical joint p.m.f., and p_{X}, p_{Y} are the empirical marginal p.m.f.'s

- $U_{\text {asym }}$ what fraction of X can be predicted by Y

Association between nominal variables: χ^{2}-based

- Several other measures based on Pearson χ^{2} (introduced in future lessons)
- Contingency coefficient C
- Cramer's V
- ϕ coefficient (or MCC, Matthews correlation coefficient)
- Tschuprov's T

See R script

Optional references

國 Harry Khamis (2008)
Measures of Association: How to Choose?
J. of Diagnostic Medical Sonography, Vol. 24, Issue 3, pages 155-162.

Kenneth J. Berry, Janis E. JohnstonPaul, and W. Mielke, Jr. (2018)
The Measurement of Association: A Permutation Statistical Approach.
Springer.

