07 Maggio 2024

INTRODUCTION TO

CAUSAL MODELLING AND REASONING

Martina Cinquini \& Isacco Beretta

CORRELATION DOES NOT IMPLY CAUSATION

Number of people who drowned by falling into a pool \equiv
correlates with
Films Nicolas Cage appeared in

CORRELATION DOES NOT IMPLY CAUSATION

Sleeping with shoes on is strongly correlated with waking up with a headache

CORRELATION DOES NOT IMPLY CAUSATION

Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

1. Shoe-sleepers differ from non-shoe-sleepers in a key way

CORRELATION DOES NOT IMPLY CAUSATION

Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

1. Shoe-sleepers differ from non-shoe-sleepers in a key way
2. Confounding

CORRELATION DOES NOT IMPLY CAUSATION

Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

1. Shoe-sleepers differ from non-shoe-sleepers in a key way
2. Confounding

Total association (e.g., correlation):
Mixture of causal and confounding association

INGREDIENTS OF A STATISTICAL THEORY OF CAUSALITY

Θ Working definition of causation
Θ Method for creating causal models
Θ Method for linking causal models with features of data
Θ Method for reasoning over model and data

THE LATTER OF CAUSALITY

"Actual" Causality

"Causality-in-mean"

Statistics

RANDOMIZED EXPERIMENTS

Which kind of post works better?

Interventional data

Limitations
$\rightarrow \quad$ Can not use historical data
Θ It cannot be applied to certain situations (e.g., long-term effect, selected demographics, content virality)

BEYOND RANDOMIZED EXPERIMENTS

Associational data

CAUSAL MODEL FRAMEWORKS

Potential Outcomes (PO)

Demand and Supply Models (Haavelmo, 1944)

Structural Causal Model (SCM)

Path analysis
(Wright, 1934)

These frameworks are complementary, with different strengths that make them appropriate to address different problems in specific situations.

CAUSAL MODEL FRAMEWORKS

Potential Outcomes (PO)

Demand and Supply Models (Haavelmo, 1944)

Estimating individual-level causal effects

Structural Causal Model (SCM)

Path analysis
(Wright, 1934)

Complex models with a large number of variables

POTENTIAL OUTCOME: INTUITION

Inferring the effect of treatment on some outcome

POTENTIAL OUTCOME: INTUITION

Take a pill
Inferring the effect of treatment on some outcome

Don't take a pill

POTENTIAL OUTCOME: INTUITION

Take a pill
Inferring the effect of treatment on some outcome

POTENTIAL OUTCOME: NOTATION


```
T: Observed Treatment
Y: Observed Outcome
i: used in subscript to denote a
specific individual
Yi(1): PO under treatment
Yi
```


OTHER DEFINITIONS

INDIVIDUAL TREATMENT EFFECT (ITE)
The ITE for the $\mathrm{i}^{\text {th }}$ unit is defined as follows:

$$
Y_{i}(1)-Y_{i}(0)
$$

POTENTIAL OUTCOME: NOTATION

T : Observed Treatment
Y : Observed Outcome
i: used in subscript to denote a
specific individual
$\mathrm{Y}_{\mathrm{i}}(1)$: PO under treatment
$\mathrm{Y}_{\mathrm{i}}(0)$: PO under no treatment

Causal Effect: $\mathrm{Y}_{\mathrm{i}}(1)-\mathrm{Y}_{\mathrm{i}}(0)=1$

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

$$
\operatorname{do}(T=1) \quad Y_{i}(1)=1
$$

$$
\mathrm{do}(\mathrm{~T}=0) \quad \mathrm{Y}_{\mathrm{i}}(0)=0
$$

Fundamental Problem.

We cannot observe both $\mathrm{Y}_{\mathrm{i}}(1)$ and $\mathrm{Y}_{\mathrm{i}}(0)$, therefore we cannot observe the

Causal Effect: $\mathrm{Y}_{\mathrm{i}}(1)-\mathrm{Y}_{\mathrm{i}}(0)$

The PO that you do not (and cannot) observe are known as COUNTERFACTUALS because they are counter to fact (reality).

Due to the fundamental problem, we know that we can't access to ITE

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

AVERAGE TREATMENT EFFECT (ATE)

The ATE is obtained by taking an average over the ITEs:

$$
\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}(1)-\mathrm{Y}_{\mathrm{i}}(0)\right]=\mathrm{E}[\mathrm{Y}(1)-\mathrm{Y}(0)]
$$

where we recall that the average is over the individuals if $Y_{i}(x)$ is deterministic.

How would we actually compute the ATE?

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

\boldsymbol{i}	T	Y	$\mathrm{Y}(\mathbf{1})$	$Y(0)$	$Y(1)-Y(0)$
1	0	0	$?$	0	$?$
2	1	1	1	$?$	$?$
3	1	0	0	$?$	$?$
4	0	0	$?$	0	$?$
5	0	1	$?$	1	$?$
6	1	1	1	$?$	$?$

The fundamental problem of Cl can be seen as a MISSING DATA

PROBLEM

The question mark means that we do not observe the value

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

$$
\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}(1)-\mathrm{Y}_{\mathrm{i}}(0)\right]=?
$$

\boldsymbol{i}	T	Y	$\mathrm{Y}(\mathbf{1})$	$Y(0)$	$Y(1)-Y(0)$
1	0	0	$?$	0	$?$
2	1	1	1	$?$	$?$
3	1	0	0	$?$	$?$
4	0	0	$?$	0	$?$
5	0	1	$?$	1	$?$
6	1	1	1	$?$	$?$

The fundamental problem of Cl can be seen as a MISSING DATA
PROBLEM

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

$$
E\left[Y_{i}(1)-Y_{i}(0)\right]=E[Y(1)]-E[Y(o)]
$$

\boldsymbol{i}	T	Y	$\mathrm{Y}(\mathbf{1})$	$Y(0)$	$Y(1)-Y(0)$
1	0	0	$?$	0	$?$
2	1	1	1	$?$	$?$
3	1	0	0	$?$	$?$
4	0	0	$?$	0	$?$
5	0	1	$?$	1	$?$
6	1	1	1	$?$	$?$

The fundamental problem of Cl can be seen as a MISSING DATA
PROBLEM

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

$$
\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}(1)-\mathrm{Y}_{\mathrm{i}}(0)\right]=\mathrm{E}[\mathrm{Y}(1)]-\mathrm{E}[\mathrm{Y}(0)]=\mathrm{E}[\mathrm{Y} \mid \mathrm{T}=1]-\mathrm{E}[\mathrm{Y} \mid \mathrm{T}=0]
$$

i	T	Y	$Y(1)$	$Y(0)$	$Y(1)-Y(0)$
1	0	0	$?$	0	$?$
2	1	1	1	$?$	$?$
3	1	0	0	$?$	$?$
4	0	0	$?$	0	$?$
5	0	1	$?$	1	$?$
6	1	1	1	$?$	$?$

The fundamental problem of Cl can be seen as a MISSING DATA PROBLEM

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

$$
\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}(1)-\mathrm{Y}_{\mathrm{i}}(0)\right]=\mathrm{E}[\mathrm{Y}(1)]-\mathrm{E}[\mathrm{Y}(0)]=\mathrm{E}[\mathrm{Y} \mid \mathrm{T}=1]-\mathrm{E}[\mathrm{Y} \mid \mathrm{T}=0]
$$

\boldsymbol{i}	T	Y	$\mathrm{Y}(1)$	$Y(0)$	$Y(1)-Y(0)$
1	0	0		0	$?$
2	1	1	1		$?$
3	1	0	0		$?$
4	0	0		0	$?$
5	0	1		1	$?$
6	1	1	1		$?$

$2 / 3$
The fundamental problem of Cl can be seen as a MISSING DATA PROBLEM

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

$$
\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}(1)-\mathrm{Y}_{\mathrm{i}}(0)\right]=\mathrm{E}[\mathrm{Y}(1)]-\mathrm{E}[\mathrm{Y}(0)]=\mathrm{E}[\mathrm{Y} \mid \mathrm{T}=1]-\mathrm{E}[\mathrm{Y} \mid \mathrm{T}=0]
$$

\boldsymbol{i}	T	Y	$\mathrm{Y}(1)$	$\mathrm{Y}(0)$	$Y(1)-Y(0)$
1	0	0		0	$?$
2	1	1	1		$?$
3	1	0	0		$?$
4	0	0		0	$?$
5	0	1		1	$?$
6	1	1	1		$?$
			$2 / 3$	$\mathbf{1 / 3}$	

The fundamental problem of Cl can be seen as a MISSING DATA PROBLEM

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

$$
\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}(1)-\mathrm{Y}_{\mathrm{i}}(0)\right]=\mathrm{E}[\mathrm{Y}(1)]-\mathrm{E}[\mathrm{Y}(0)]=\mathrm{E}[\mathrm{Y} \mid \mathrm{T}=1]-\mathrm{E}[\mathrm{Y} \mid \mathrm{T}=0]
$$

\boldsymbol{i}	T	Y	$\mathrm{Y}(\mathbf{1})$	$\mathrm{Y}(0)$	$Y(1)-Y(0)$
1	0	0		0	
2	1	1	1		$?$
3	1	0	0		$?$
4	0	0		0	$?$
5	0	1		1	$?$
6	1	1	1		$?$
			$\mathbf{2 / 3}$	$\mathbf{1 / 3}$	$\mathbf{1 / 3}$

The fundamental problem of Cl can be seen as a MISSING DATA PROBLEM

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

$$
\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}(1)-\mathrm{Y}_{\mathrm{i}}(0)\right]=\mathrm{E}[\mathrm{Y}(1)]-\mathrm{E}[\mathrm{Y}(0)](2) \mathrm{E}[\mathrm{Y} \mid \mathrm{T}=1]-\mathrm{E}[\mathrm{Y} \mid \mathrm{T}=0]
$$

i	T	Y	$Y(1)$	$Y(0)$	$Y(1)-Y(0)$
1	0	0		0	?
2	1	1	1		?
3	1	0	0		?
4	0	0		0	?
5	0	1		1	?
6	1	1	1		?

What does it mean?
causation is simply association

In general, they are not equal
due to CONFOUNDING

What ASSUMPTIONS would make the
ATE equal to the associational
difference?

IGNORABILITY - $(\mathrm{Y}(1), \mathrm{Y}(0)) \perp \mathrm{T}$

$$
\begin{aligned}
\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}(1)\right]-\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}(0)\right] & =\mathrm{E}[\mathrm{Y}(1) \mid \mathrm{T}=1]-\mathrm{E}[\mathrm{Y}(0) \mid \mathrm{T}=0] \\
& =\mathrm{E}[\mathrm{Y} \mid \mathrm{T}=1]-\mathrm{E}[\mathrm{Y} \mid \mathrm{T}=0]
\end{aligned}
$$

Θ We can ignore how individual ended up in the treatment/control group, and treat their PO as exchangeable. However, it is unrealistic in observational data.
Θ Unconfoundeness

$$
(\mathrm{Y}(1), \mathrm{Y}(0)) \perp \mathrm{T} \mid \mathrm{X}
$$

IGNORABILITY - $(\mathrm{Y}(1), \mathrm{Y}(0)) \perp \mathrm{T}$

$$
\begin{aligned}
\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}(1)\right]-\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}(0)\right] & =\mathrm{E}[\mathrm{Y}(1) \mid \mathrm{T}=1]-\mathrm{E}[\mathrm{Y}(0) \mid \mathrm{T}=0] \\
& =\mathrm{E}[\mathrm{Y} \mid \mathrm{T}=1]-\mathrm{E}[\mathrm{Y} \mid \mathrm{T}=0]
\end{aligned}
$$

Θ We can ignore how individual ended up in the treatment/control group, and treat their PO as exchangeable. However, it is unrealistic in observational data.

Unconfoundeness

$$
(\mathrm{Y}(1), \mathrm{Y}(0)) \perp \mathrm{T} \mid \mathrm{X}
$$

When conditioning on \mathbf{X}, noncausal association between T and Y no longer exists.

UNCONFOUNDENESS

While is not a problem in randomized experiments, it is an untestable assumption in observational data

There may be some unobserved confounders that are not part of $X=\{M\}$, meaning unconfoundedness is violated.

UNCONFOUNDENESS

While is not a problem in randomized experiments, it is an untestable assumption in observational data

There may be some unobserved confounders that are not part of $X=\{M\}$, meaning unconfoundedness is violated.

ASIDE: IDENTIFIABILITY

$$
\begin{gathered}
\frac{\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}(1)\right]-\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}(0)\right]}{\downarrow_{\text {Causal quantities }}}=\frac{\mathrm{E}[\mathrm{Y}(1) \mid \mathrm{T}=1]-\mathrm{E}[\mathrm{Y}(0) \mid \mathrm{T}=0]}{} \\
\text { Statistical quantities }
\end{gathered}
$$

A causal quantity (e.g. $\mathrm{E}[\mathrm{Y}(t)]$) is identifiable if we can compute it from a purely statistical quantity (e.g. $\mathrm{E}[\mathrm{Y} \mid t)$)

POSITIVITY

For all values \mathbf{x} of covariates \mathbf{x} present in the population of interest (i.e., \mathbf{z} such that $\mathrm{P}(\mathrm{X}=\mathrm{x}>0)$)

$$
0<\mathrm{P}(\mathrm{~T}=1 \mid \mathrm{X}=\mathrm{x})<1
$$

Positivity is the condition that all subgroups of the data with different value x for covariates \mathbf{X} have some probability of receiving any value of treatment T

POSITIVITY: INTUITION

No one treated
Total Population

Everyone treated

POSITIVITY: OVERLAP

No overlap means severe positivity violation

POSITIVITY - OVERLAP

Complete overlap means no positivity violation
adjusting (conditioning)
could
lead to more covariates Z
higher chance of
satisfying
unconfoundedness

demanding too much from models and getting very bad behavior in return

fit a model to $\mathbb{E}[Y \mid X, \mathrm{Z}]$ using the available data (x, y, \mathbf{z})

```
increase the "dimension" of the covariates Z
```

higher chance of violating positivity
makes the subgroups for any level \mathbf{z} of the covariates \mathbf{Z} smaller

CURSE OF DIMENSIONALITY

NO INTERFERENCE

The outcome Y_{i} of each unit \mathbf{i} is unaffected by anyone else's treatment $T_{j} \mathbf{j} \neq \mathbf{i}$

$$
Y_{i}\left(t_{1}, t_{2}, \ldots ., t_{i-1}, t_{i+1}, \ldots, t_{n-1}, t_{n}\right)=Y_{i}\left(t_{i}\right)
$$

NO INTERFERENCE

My happiness

NO INTERFERENCE

Whether friends get dogs
Whether friends get dogs

CONSISTENCY

If the treatment is T , then the observed outcome Y is the potential outcome under treatment X .

$$
\text { Formally, } \mathrm{T}=\mathrm{t} \Rightarrow \mathrm{Y}=\mathrm{Y}(\mathrm{t})
$$

$$
(T=1) \Longrightarrow Y=1 \text { (I'm happy) }
$$

SUTVA

A combination of consistency and no interference. Specifically, the PO of a unit do not depend on the treatments assigned to others.

But in real world ...

HOW TO USE THE PO: AN EXAMPLE

PROPENSITY SCORE MATCHING (PSM)

It match $\mathrm{T}=0$ and $\mathrm{T}=1$ observations on the estimated probability of being treated.

HOW TO USE THE PO: AN EXAMPLE
PROPENSITY SCORE MATCHING (PSM)

It match $\mathrm{T}=0$ and $\mathrm{T}=1$ observations on the estimated probability of being treated.

27

PO RECAP

\rightarrow Mainly used for estimating average effects of binary treatments
\rightarrow Convincing empirical applications

LIMITATIONS:

An expert of the field should verify whether all the previous assumptions are valid.
It is challenging and you need some people working on it.
No use of causal diagrams

CAUSAL MODEL FRAMEWORKS

Potential Outcomes (PO)

Antecedents in the earlier econometric literature

Specifically, to deal with:

Demand and Supply Models (Haavelmo, 1944)

Structural Causal Model (SCM)

Path analysis
(Wright, 1934)

Complex models with a large number of variables

STRUCTURAL CAUSAL MODEL

Mathematically, a Structural Causal Model (SCM) consists of a set of Endogenous (V) and a set of Exogenous (U) variables connected by a set of functions (F) that determine the values of the the variables in V based on the values of the variables in U.

Each SCM is associated with a graphical model where each node is a variable in V and each edge is a function \mathbf{f}.

GRAPH TERMINOLOGY

Directed Graph

Undirected Graph

GRAPH TERMINOLOGY

Directed Graph

Undirected Graph

This graph contains a cycle

GRAPH TERMINOLOGY

Directed Acyclic Graph

Undirected Graph

GRAPH TERMINOLOGY

GRAPH TERMINOLOGY

Descendant is a broader term than child because it includes not only the immediate children but also their children and so forth

GRAPH TERMINOLOGY

Adjacent

Ajdacent is a node that is directly connected to another node within a graph

GRAPH TERMINOLOGY

A path is a sequence of nodes where each node is connected to the next node by an edge

STRUCTURAL CAUSAL MODEL: EXAMPLE

$$
\begin{aligned}
& \mathrm{X}=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right\} \\
& \mathrm{X}_{1}:=\operatorname{Uniform}(0,1) \\
& \mathrm{X}_{2}:=\sin \left(\mathrm{X}_{1}\right)+\operatorname{Normal}(0,1) \\
& \mathrm{X}_{3}:=2 * \mathrm{X}_{1}+\operatorname{Normal}(0,1)
\end{aligned}
$$

Structural Equation (SE)

Directed Acyclic Graph (DAG)

CAUSAL STRUCTURES

Collider

Confounder

Chain

CAUSAL STRUCTURES: EXAMPLE

CAUSAL STRUCTURES: EXAMPLE

CAUSAL STRUCTURES: EXAMPLE

LEVELS OF INVESTIGATION

Causal Discovery (CD)
Causal Inference (CI)

Given a set of variables, is it possible to determine the
causal relationship
between them?

A	B	C	D	E
3.2	2.2	1.6	7.5	2.4
2.9	3.1	1.3	8.2	5.1
\ldots	\ldots	\ldots	\ldots	\ldots

CAUSAL PIPELINE

Causal Discovery

What are the consequences of turning on the sprinkler? (The floor gets wet)

Causal Inference

CAUSAL DISCOVERY: METHODS

Markov Equivalence Class

CAUSAL DISCOVERY: METHODS

Markov Equivalence Class

V-structure

$$
X_{1} \not \Perp X_{3} \mid X_{2}, \quad X_{1} \Perp X_{3}
$$

CAUSAL DISCOVERY: METHODS

Markov Equivalence Class

- Strong assumptions but they can uniquely identify the true DAG
- Linear and non-Gaussian, Additive noise, Post-nonlinear

INTERVENTION

Interpreting edges as cause-effect relationships enable reasoning about the outcome of
interventions using the do-operator

INTERVENTION

The notation do(Sprinkler := ON) denotes an intervention by which variable Sprinkler is set to value ON .

Externally forcing the variable to assume a particular value makes it independent of its causes and breaks their causal influence on it.

INTERVENTION

Interventional Data

Graphically, the effect of an intervention can be captured by removing all incoming edges to the intervened variable.

BACK-DOOR CRITERION

The best-known technique to find causal estimands given a graph.

A set of variables \mathbf{Z} satisfies the back-door criterion relative to an ordered pair of variables $\left(X_{i}, X_{j}\right)$ in a DAG G if:
no node in \mathbf{Z} is a descendant of X_{i}

Z blocks every path between X_{i} and X_{j} that contains an arrow into X_{i}.

BACK-DOOR CRITERION: EXAMPLE

This path is not causal.
It is a process that creates spurious correlations between

$$
X_{1} \text { and } X_{3} \text { that are driven solely by fluctuations }
$$

in the X_{2} random variable.

Backdoor path
$\mathrm{X}_{1}<-\mathrm{X}_{2}->\mathrm{X}_{3}$
f we can close all of the open backdoor paths, then we can isolate the causal effect of X_{1} and X_{3} using an identification strategy.

$$
\mathrm{P}\left(\mathrm{X}_{3} \mid \operatorname{do}\left(\mathrm{X}_{1}\right)=\sum_{\mathrm{X} 2} \mathrm{P}\left(\mathrm{X}_{3} \mid \mathrm{X}_{1}, \mathrm{X}_{2}\right) \mathrm{P}\left(\mathrm{X}_{2}\right)\right.
$$

| EXERCISE

Find
the discovered
graph

REFERENCES

Pearl, Judea, and Dana Mackenzie. The book of why: the new science of cause and effect. Basic books, 2018.

Imbens, Guido W. "Potential outcome and directed acyclic graph approaches to causality: Relevance for empirical practice in economics." Journal of Economic Literature 58.4 (2020): 1129-1179.

Nogueira, Ana Rita, et al. "Methods and tools for causal discovery and causal inference." Wiley interdisciplinary reviews: data mining and knowledge discovery 12.2 (2022): e1449.

Pearl, Judea, Madelyn Glymour, and Nicholas P. Jewell. Causal inference in statistics: A primer. John Wiley \& Sons, 2016.
https://www.bradyneal.com/causal-inference-course

THANK FOR YOUR ATTENTION

