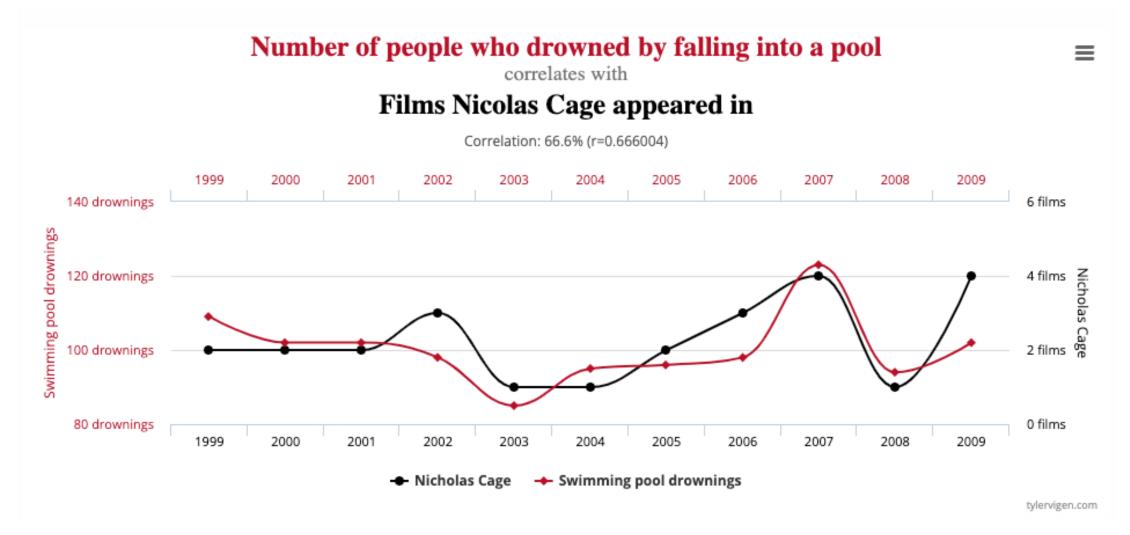
07 Maggio 2024

### **INTRODUCTION TO**

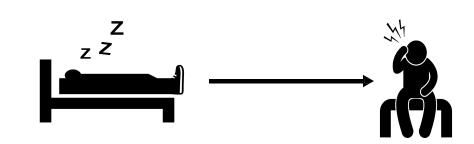
### **CAUSAL MODELLING AND REASONING**

Martina Cinquini & Isacco Beretta





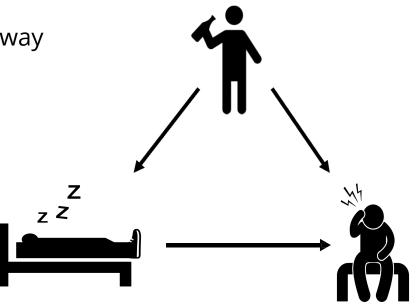
Sleeping with shoes on is strongly correlated with waking up with a headache



Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

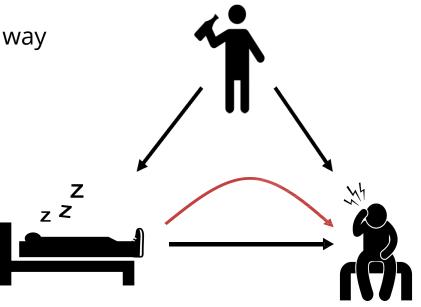
1. Shoe-sleepers differ from non-shoe-sleepers in a key way



Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

Shoe-sleepers differ from non-shoe-sleepers in a key way
Confounding



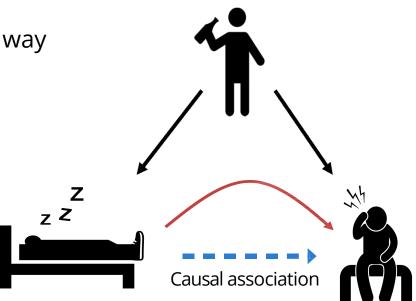
Sleeping with shoes on is strongly correlated with waking up with a headache

Common cause: drinking the night before

Shoe-sleepers differ from non-shoe-sleepers in a key way
Confounding

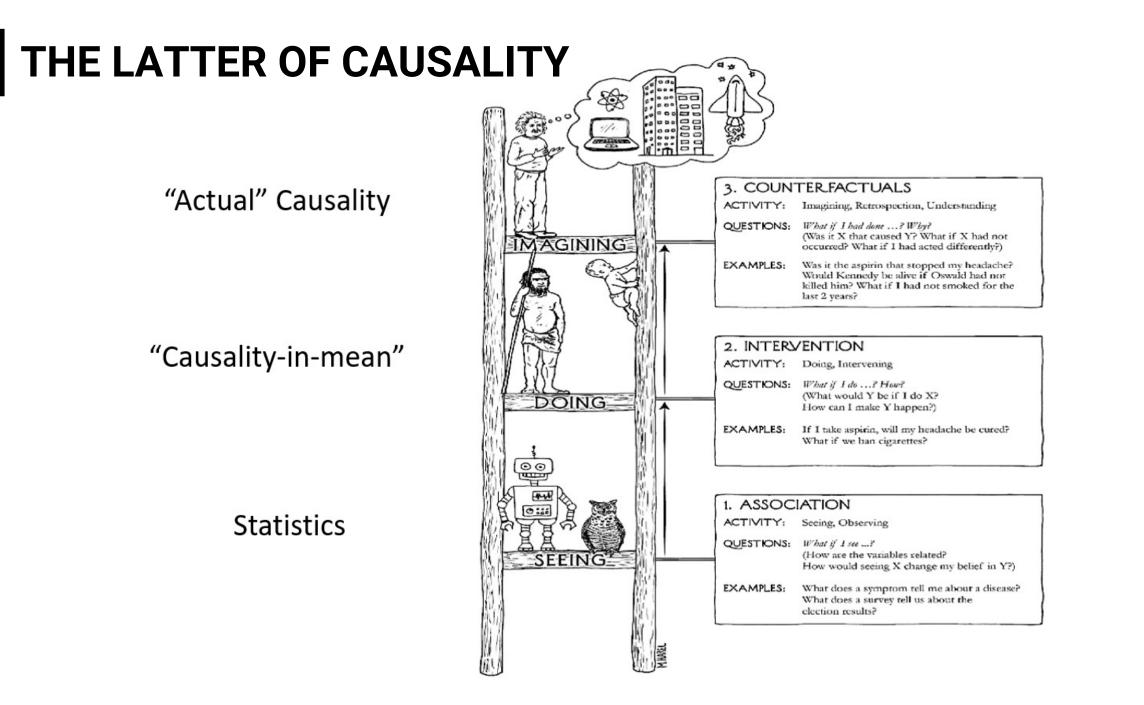
Total association (e.g., correlation):

Mixture of causal and confounding association



### **INGREDIENTS OF A STATISTICAL THEORY OF CAUSALITY**

- Working definition of causation
- Method for creating causal models
- Method for linking causal models with features of data
- $\Theta$
- Method for reasoning over model and data



### **RANDOMIZED EXPERIMENTS**



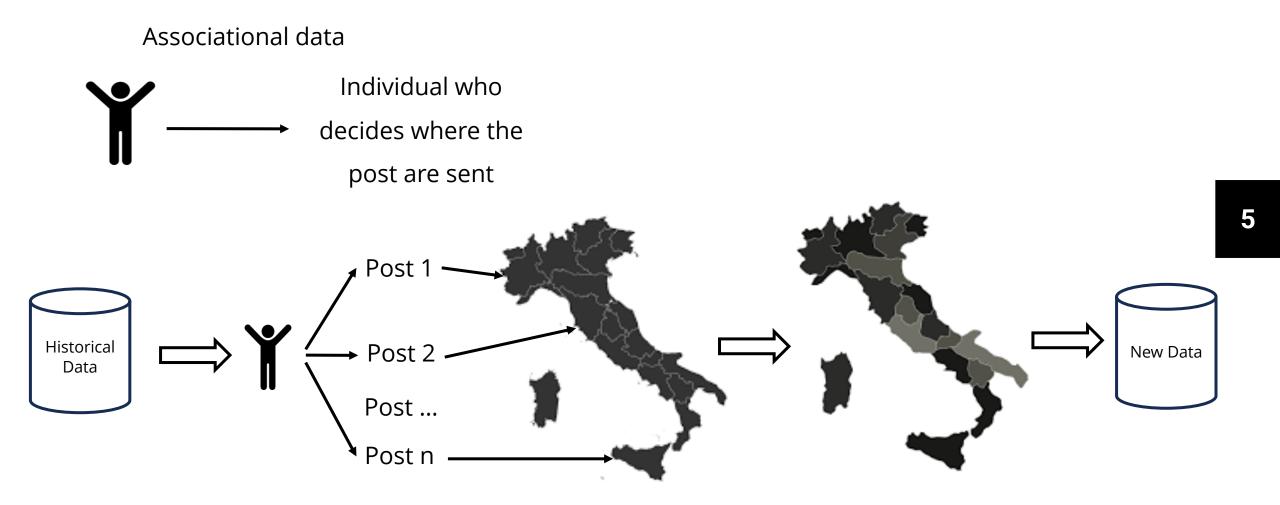
#### Limitations



#### Can not use **historical** data

It cannot be applied to certain situations (e.g., long-term effect, selected demographics, content virality)

### **BEYOND RANDOMIZED EXPERIMENTS**



### **CAUSAL MODEL FRAMEWORKS**

Potential Outcomes (PO)

Structural Causal Model (SCM)

Antecedents in the earlier econometric literature

Demand and Supply Models (Haavelmo, 1944) Path analysis (Wright, 1934)

These frameworks are complementary, with different strengths that make them appropriate to address different problems in specific situations.

### **CAUSAL MODEL FRAMEWORKS**

Potential Outcomes (PO)

Structural Causal Model (SCM)

Antecedents in the earlier econometric literature

Demand and Supply Models (Haavelmo, 1944) Path analysis (Wright, 1934)

Specifically, to deal with:

Estimating individual-level causal effects

Complex models with a large number of variables

### **POTENTIAL OUTCOME: INTUITION**

Inferring the effect of treatment on some outcome



### **POTENTIAL OUTCOME: INTUITION**

Inferring the effect of treatment on some outcome

Take a pill





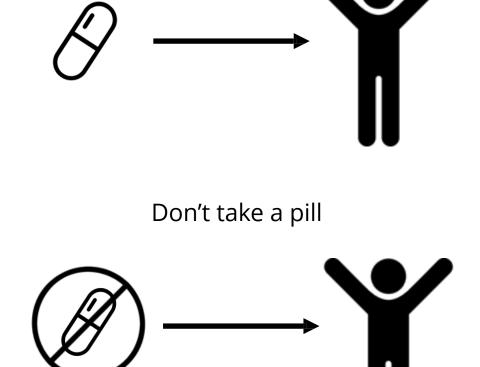
Causal Effect?

### **POTENTIAL OUTCOME: INTUITION**

Inferring the effect of treatment on some outcome

Take a pill

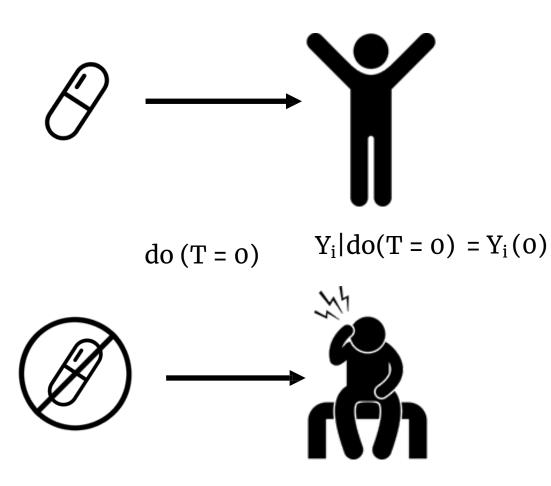


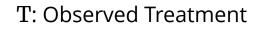


No Causal Effect

### **POTENTIAL OUTCOME: NOTATION**

do (T = 1)  $Y_i | do(T = 1) = Y_i(1)$ 





Y: Observed Outcome

i: used in subscript to denote a specific individual

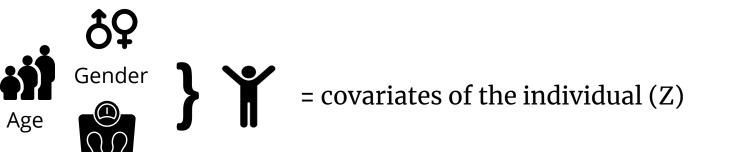
 $Y_i(1)$ : PO under treatment

 $Y_i(0)$ : PO under no treatment

### **OTHER DEFINITIONS**

= unit ( individual)

# = population



#### INDIVIDUAL TREATMENT EFFECT (ITE)

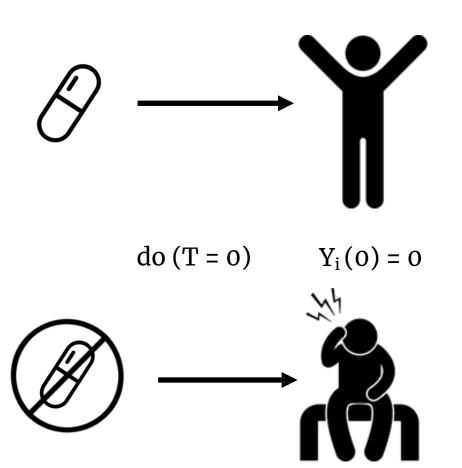
The ITE for the  $i^{th}$  unit is defined as follows:

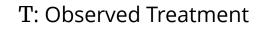
 $Y_i(1) - Y_i(0)$ 

Weight

### **POTENTIAL OUTCOME: NOTATION**

do (T = 1)  $Y_i(1) = 1$ 





Y: Observed Outcome

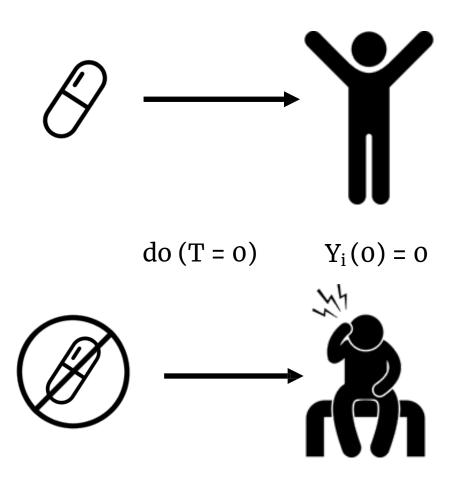
i: used in subscript to denote a specific individual

 $Y_i(1)$ : PO under treatment

 $Y_i(0)$ : PO under no treatment

Causal Effect:  $Y_i(1) - Y_i(0) = 1$ 

do (T = 1) 
$$Y_i(1) = 1$$



#### **Fundamental Problem.**

We cannot observe both  $Y_i(1)$  and  $Y_i(0)$ , therefore we cannot observe the

Causal Effect:  $Y_i(1) - Y_i(0)$ 

The PO that you do not (and cannot) observe are known as **COUNTERFACTUALS** because they are counter to fact (reality).

Due to the fundamental problem, we know that we can't access to ITE

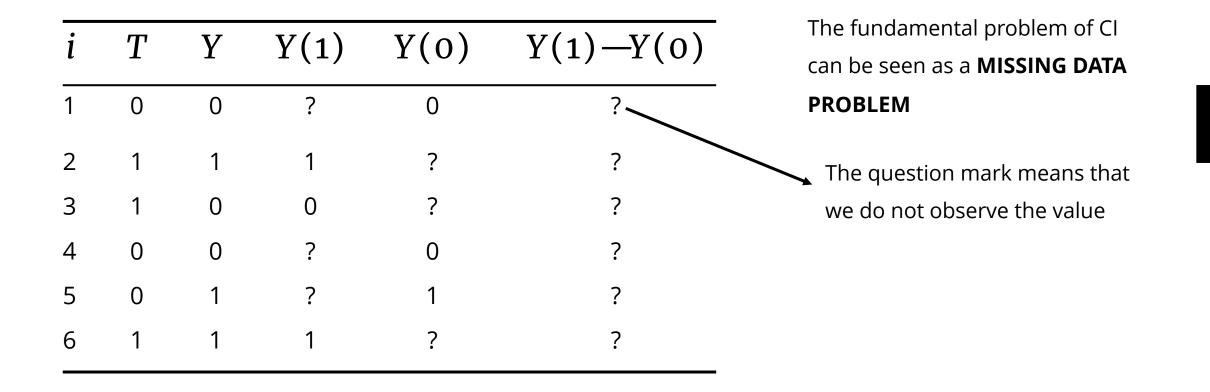
#### **AVERAGE TREATMENT EFFECT (ATE)**

The ATE is obtained by taking an average over the ITEs:

 $E[Y_i(1) - Y_i(0)] = E[Y(1) - Y(0)]$ 

where we recall that the average is over the individuals i if  $Y_i(x)$  is deterministic.

How would we actually compute the ATE?



 $E[Y_i(1) - Y_i(0)] = ?$ 

| i | T | Y | Y(1) | Y(0) | Y(1) - Y(0) |
|---|---|---|------|------|-------------|
| 1 | 0 | 0 | ?    | 0    | ?           |
| 2 | 1 | 1 | 1    | ?    | ?           |
| 3 | 1 | 0 | 0    | ?    | ?           |
| 4 | 0 | 0 | ?    | 0    | ?           |
| 5 | 0 | 1 | ?    | 1    | ?           |
| 6 | 1 | 1 | 1    | ?    | ?           |

 $E[Y_i(1) - Y_i(0)] = E[Y(1)] - E[Y(0)]$ 

| i | T | Y | Y(1) | Y(0) | Y(1) - Y(0) |
|---|---|---|------|------|-------------|
| 1 | 0 | 0 | ?    | 0    | ?           |
| 2 | 1 | 1 | 1    | ?    | ?           |
| 3 | 1 | 0 | 0    | ?    | ?           |
| 4 | 0 | 0 | ?    | 0    | ?           |
| 5 | 0 | 1 | ?    | 1    | ?           |
| 6 | 1 | 1 | 1    | ?    | ?           |

 $E[Y_i(1) - Y_i(0)] = E[Y(1)] - E[Y(0)] = E[Y | T = 1] - E[Y|T = 0]$ 

| i | T | Y | Y(1) | Y(0) | Y(1) - Y(0) |
|---|---|---|------|------|-------------|
| 1 | 0 | 0 | ?    | 0    | ?           |
| 2 | 1 | 1 | 1    | ?    | ?           |
| 3 | 1 | 0 | 0    | ?    | ?           |
| 4 | 0 | 0 | ?    | 0    | ?           |
| 5 | 0 | 1 | ?    | 1    | ?           |
| 6 | 1 | 1 | 1    | ?    | ?           |

 $E[Y_i(1) - Y_i(0)] = E[Y(1)] - E[Y(0)] = E[Y | T = 1] - E[Y|T = 0]$ 

| i | Т | Y | Y(1) | Y(0) | Y(1) - Y(0) |
|---|---|---|------|------|-------------|
| 1 | 0 | 0 |      | 0    | ?           |
| 2 | 1 | 1 | 1    |      | ?           |
| 3 | 1 | 0 | 0    |      | ?           |
| 4 | 0 | 0 |      | 0    | ?           |
| 5 | 0 | 1 |      | 1    | ?           |
| 6 | 1 | 1 | 1    |      | ?           |

 $E[Y_i(1) - Y_i(0)] = E[Y(1)] - E[Y(0)] = E[Y | T = 1] - E[Y|T = 0]$ 

| i | T | Y | Y(1) | Y(0) | Y(1) - Y(0) |
|---|---|---|------|------|-------------|
| 1 | 0 | 0 |      | 0    | ?           |
| 2 | 1 | 1 | 1    |      | ?           |
| 3 | 1 | 0 | 0    |      | ?           |
| 4 | 0 | 0 |      | 0    | ?           |
| 5 | 0 | 1 |      | 1    | ?           |
| 6 | 1 | 1 | 1    |      | ?           |

The fundamental problem of CI can be seen as a **MISSING DATA PROBLEM** 

2/3 1/3

 $E[Y_i(1) - Y_i(0)] = E[Y(1)] - E[Y(0)] = E[Y | T = 1] - E[Y|T = 0]$ 

| i | T | Y | Y(1) |  | Y(0) |   | ) | Y(1) - Y(0) |
|---|---|---|------|--|------|---|---|-------------|
| 1 | 0 | 0 |      |  |      | 0 |   | ?           |
| 2 | 1 | 1 | 1    |  |      |   |   | ?           |
| 3 | 1 | 0 | 0    |  |      |   |   | ?           |
| 4 | 0 | 0 |      |  |      | 0 |   | ?           |
| 5 | 0 | 1 |      |  |      | 1 |   | ?           |
| 6 | 1 | 1 | 1    |  |      |   |   | ?           |

The fundamental problem of CI can be seen as a **MISSING DATA PROBLEM** 

2/3 - 1/3 = 1/3

 $E[Y_i(1) - Y_i(0)] = E[Y(1)] - E[Y(0)] \ge E[Y | T = 1] - E[Y|T = 0]$ 

| i               | Т | Y | Y(1) | Y(0) | Y(1) - Y(0) |  |
|-----------------|---|---|------|------|-------------|--|
| 1               | 0 | 0 |      | 0    | ?           |  |
| 2               | 1 | 1 | 1    |      | ?           |  |
| 3               | 1 | 0 | 0    |      | ?           |  |
| 4               | 0 | 0 |      | 0    | ?           |  |
| 5               | 0 | 1 |      | 1    | ?           |  |
| 6               | 1 | 1 | 1    |      | ?           |  |
| 2/3 - 1/3 = 1/3 |   |   |      |      |             |  |

What does it mean? causation is simply association

In general, they are not equal due to **CONFOUNDING** 

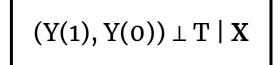
What **ASSUMPTIONS** would make the ATE equal to the associational difference?

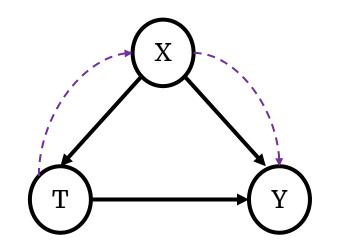
### **IGNORABILITY - (Y(1), Y(0))** $\perp$ **T**

## $E[Y_i(1)] - E[Y_i(0)] = E[Y(1) | T = 1] - E[Y(0) | T = 0]$ = E[Y | T = 1] - E[Y|T = 0]

We can ignore how individual ended up in the treatment/control group, and treat their PO as <u>exchangeable</u>. However, it is **unrealistic** in observational data.

Unconfoundeness





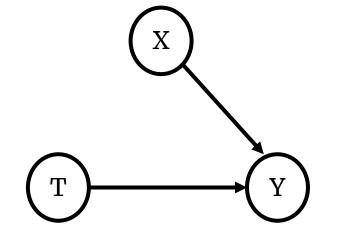
### **IGNORABILITY - (Y(1), Y(0))** $\perp$ **T**

## $E[Y_i(1)] - E[Y_i(0)] = E[Y(1) | T = 1] - E[Y(0) | T = 0]$ = E[Y | T = 1] - E[Y|T = 0]

We can ignore how individual ended up in the treatment/control group, and treat their PO as <u>exchangeable</u>. However, it is **unrealistic** in observational data.

Unconfoundeness

 $(Y(1), Y(0)) \perp T \mid X$ 

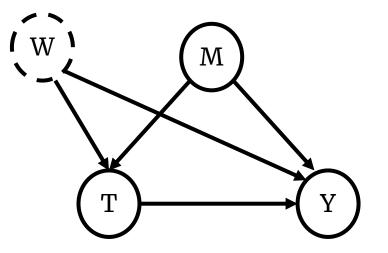


When conditioning on **X**, **noncausal** association between *T* and **Y no longer exists**.

### UNCONFOUNDENESS

O While is not a problem in randomized experiments, it is an **untestable assumption** in observational data

 $\bigcirc$  There may be some **unobserved confounders** that are not part of X = {M}, meaning unconfoundedness is <u>violated</u>.

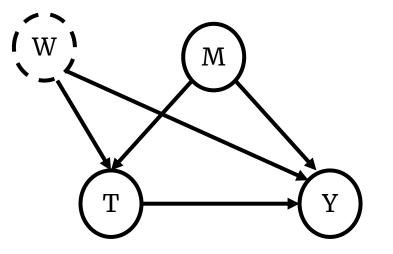


Ignorability  $(Y(1), Y(0)) \perp T \mid X$ 

### UNCONFOUNDENESS

O While is not a problem in randomized experiments, it is an **untestable assumption** in observational data

 $\bigcirc$  There may be some **unobserved confounders** that are not part of X = {M}, meaning unconfoundedness is <u>violated</u>.



lgnorability (Y(1), Y(0)) T | X

### **ASIDE: IDENTIFIABILITY**

$$E[Y_i(1)] - E[Y_i(0)] = E[Y(1) | T = 1] - E[Y(0) | T = 0]$$

$$= E[Y | T = 1] - E[Y|T = 0]$$

Causal quantities

Statistical quantities

A causal quantity (e.g. E[Y(t)]) is **identifiable** if we can compute it from a purely statistical quantity (e.g. E[Y | t))

### POSITIVITY

For all values x of covariates x present in the population of interest (i.e., z such that P(X = x > 0))

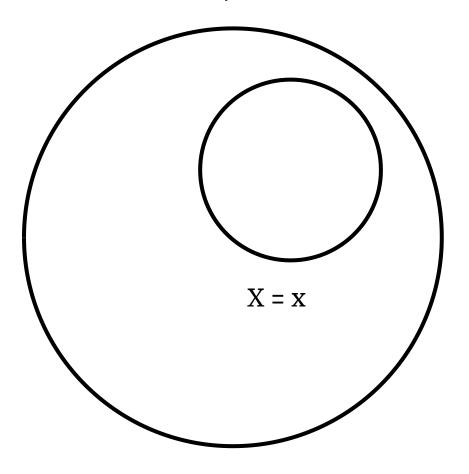
0 < P(T = 1 | X = x) < 1

 $\overline{\mathbf{\Theta}}$ 

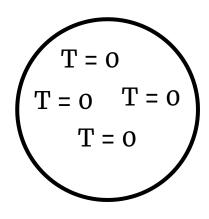
Positivity is the condition that **all subgroups of the data** with different value x for covariates X have some probability of receiving any value of treatment T

### **POSITIVITY: INTUITION**

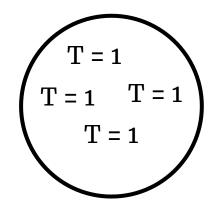
**Total Population** 



No one treated

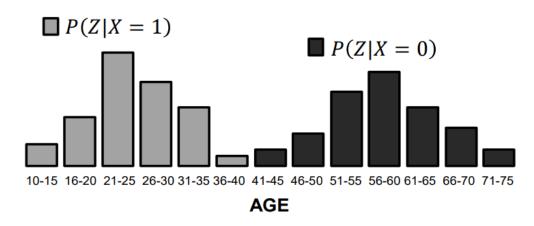


Everyone treated

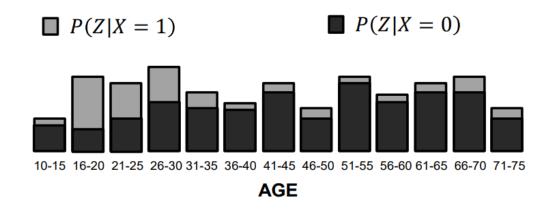


### **POSITIVITY: OVERLAP**

#### NO POSITIVITY - NO OVERLAP

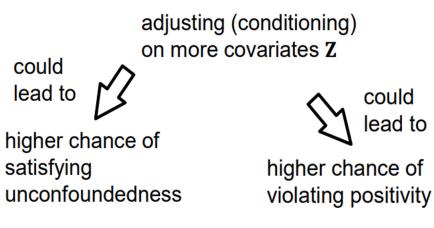


#### **POSITIVITY - OVERLAP**



#### No overlap means severe positivity violation

Complete overlap means no positivity violation



demanding too much from models and getting very bad behavior in return

fit a model to  $\mathbb{E}[Y|X, \mathbf{Z}]$ using the available data  $(x, y, \mathbf{Z})$  increase the "*dimension*" of the covariates **Z** 

 $\Lambda$ 

makes the subgroups for any level z of the covariates  $\mathbf{Z}$  smaller

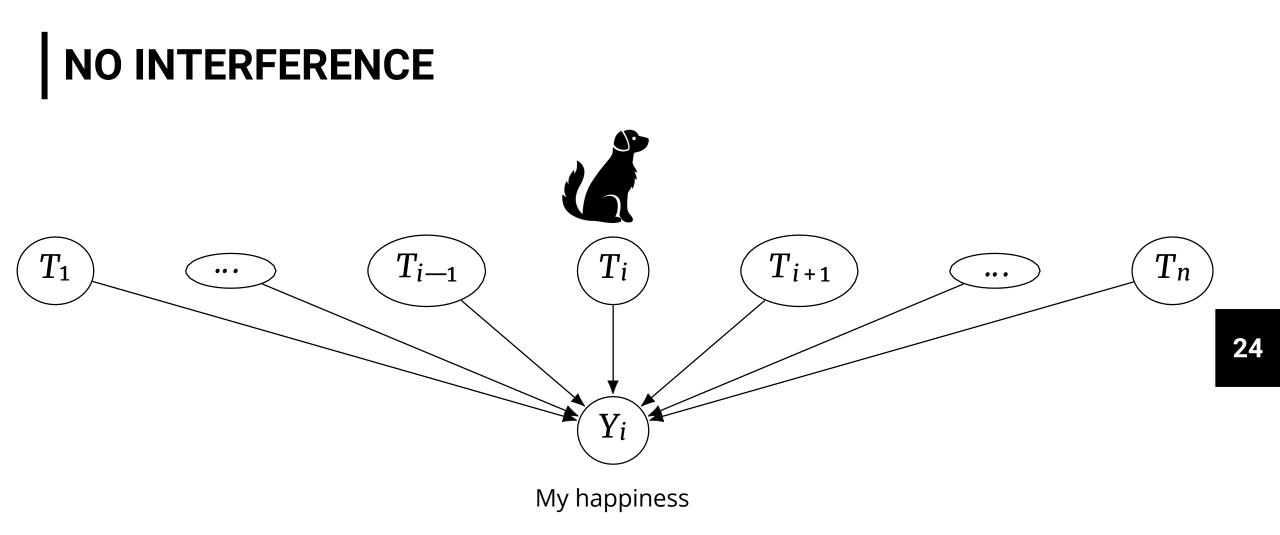
 $\mathcal{P}$ 

CURSE OF DIMENSIONALITY

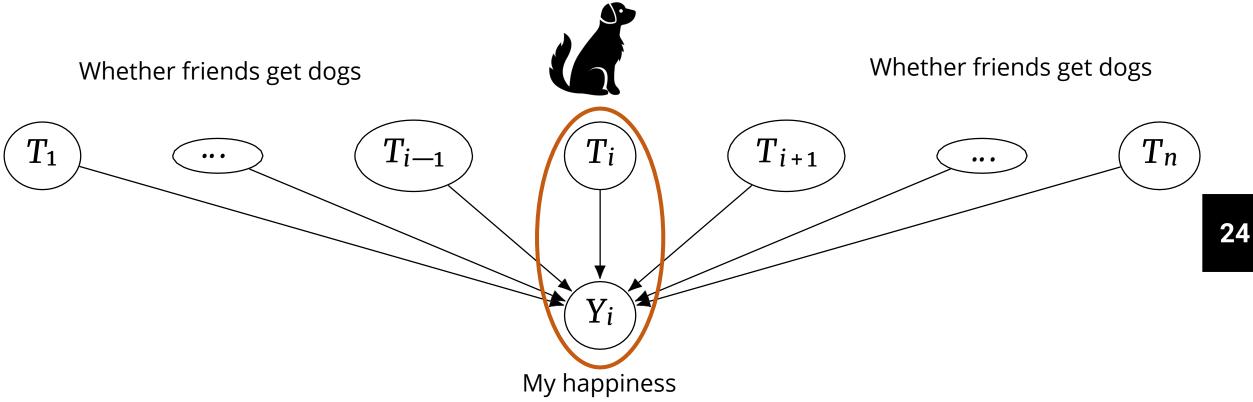
# **NO INTERFERENCE**

The outcome  $Y_i$  of each unit i is unaffected by anyone else's treatment  $T_j \, j \neq i$ 

 $Y_i(t_1, t_2, ..., t_{i-1}, t_{i+1}, ..., t_{n-1}, t_n) = Y_i(t_i)$ 



# **NO INTERFERENCE**





If the treatment is T, then the observed outcome Y is the potential outcome under treatment X.

Formally, T = t  $\Box > Y = Y(t)$ 

$$(T = 1) \implies Y = 1 \text{ (I'm happy)}$$
  
Consistency assumption  
violated

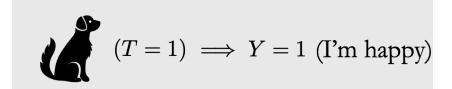


A combination of consistency and no interference. Specifically, the PO of a unit **do not** 

depend on the treatments assigned to others.

But in real world ...



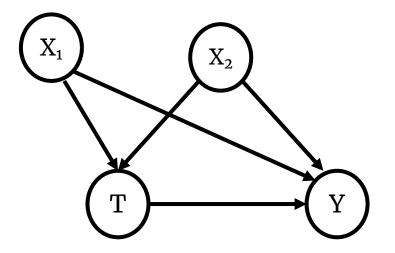


# <image>

### HOW TO USE THE PO: AN EXAMPLE

### **PROPENSITY SCORE MATCHING (PSM)**

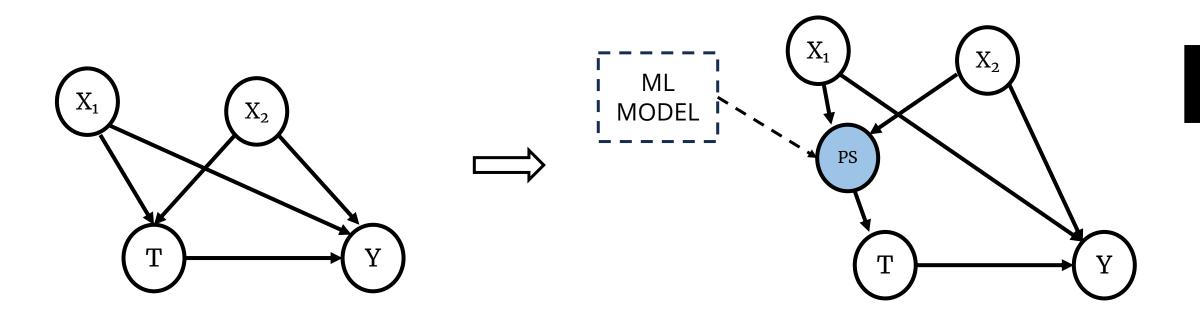
It match T=0 and T=1 observations on the estimated probability of being treated.



### HOW TO USE THE PO: AN EXAMPLE

### **PROPENSITY SCORE MATCHING (PSM)**

It match T=0 and T=1 observations on the estimated probability of being treated.





€

Mainly used for estimating average effects of binary treatments



Convincing empirical applications

### LIMITATIONS:



⇒

An **expert of the field** should **verify** whether **all** the previous **assumptions** are **valid**. It is **challenging** and you need **some people working on it**.

**No** use of causal diagrams

### **CAUSAL MODEL FRAMEWORKS**

Potential Outcomes (PO)

Structural Causal Model (SCM)

Antecedents in the earlier econometric literature

Demand and Supply Models (Haavelmo, 1944)

Path analysis (Wright, 1934)

29

Specifically, to deal with:

Estimating individual-level causal effects

Complex models with a large number of variables

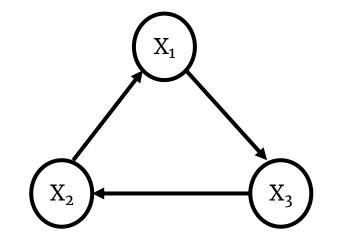
### STRUCTURAL CAUSAL MODEL

Mathematically, a Structural Causal Model (SCM) consists of a set of Endogenous (V) and

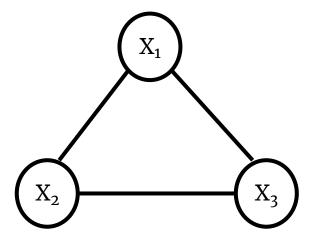
a set of **Exogenous (U)** variables connected by **a set of functions (F)** that determine the

values of the the variables in V based on the values of the variables in U.

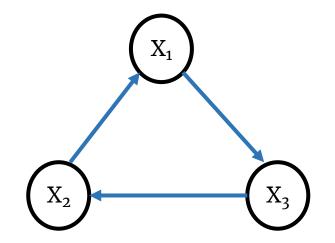
Each SCM is associated with a **graphical model** where **each node** is a **variable in V** and each edge is a **function f**.



**Directed Graph** 

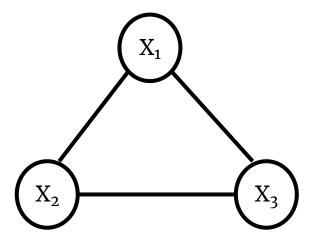


**Undirected Graph** 

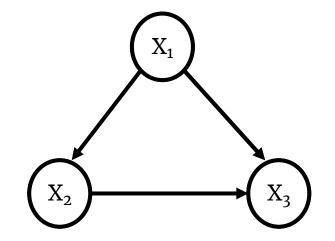




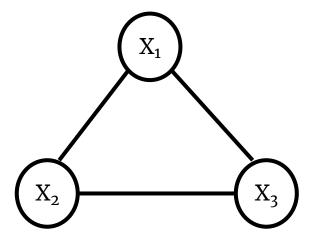
This graph contains a cycle



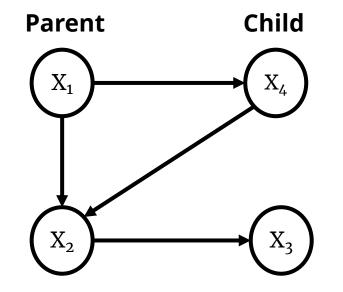
**Undirected Graph** 

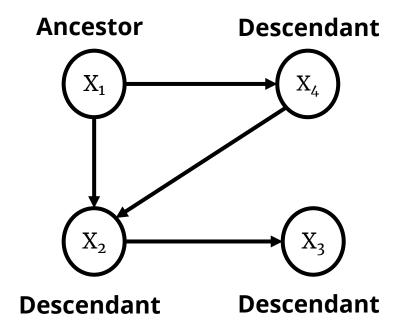


**Directed Acyclic Graph** 

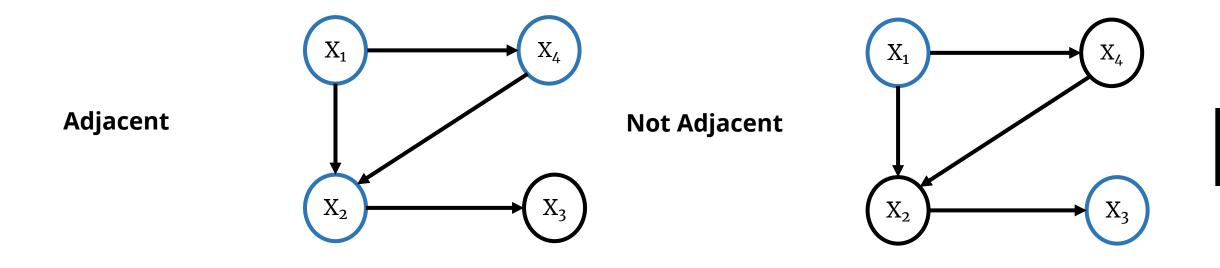


**Undirected Graph** 

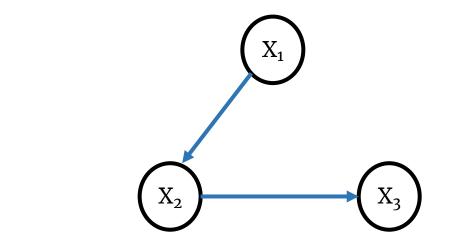




Descendant is a **broader** term than child because it includes **not only the immediate children** but also **their children and so forth** 



**Ajdacent** is a node that is **directly connected** to another node within a graph



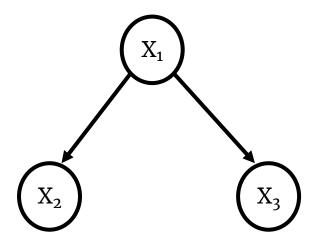
Path

A **path** is a sequence of nodes where each node is connected to the next node by an edge

### STRUCTURAL CAUSAL MODEL: EXAMPLE

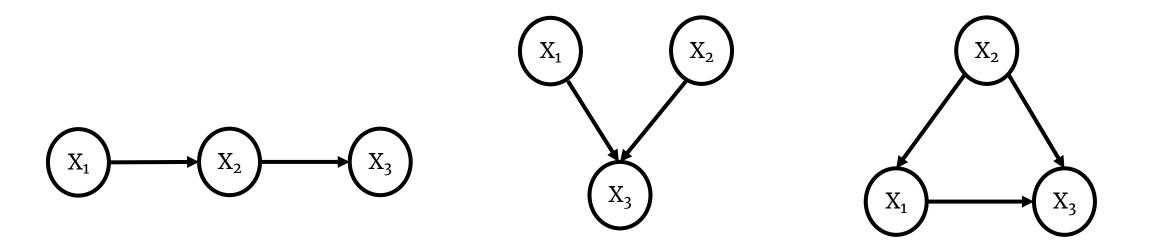
 $X = \{X_1, X_2, X_3\}$ 

- $X_1 := \text{Uniform}(0, 1)$
- $X_2 := sin(X_1) + Normal(0, 1)$
- $X_3 := 2 * X_1 + Normal(0, 1)$ 
  - Structural Equation (SE)



Directed Acyclic Graph (DAG)

# CAUSAL STRUCTURES

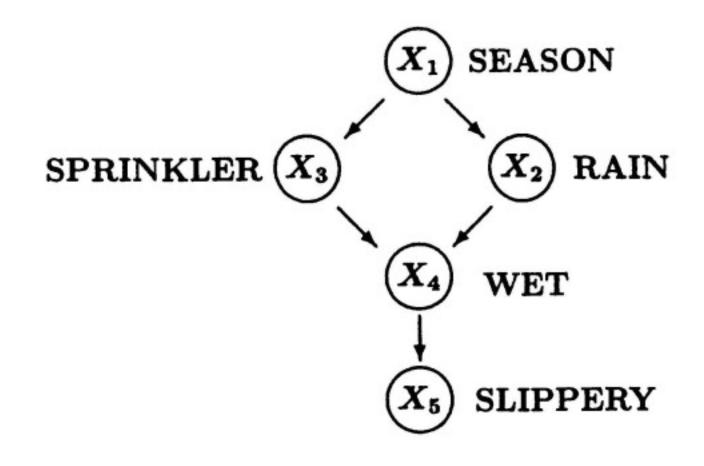


Chain

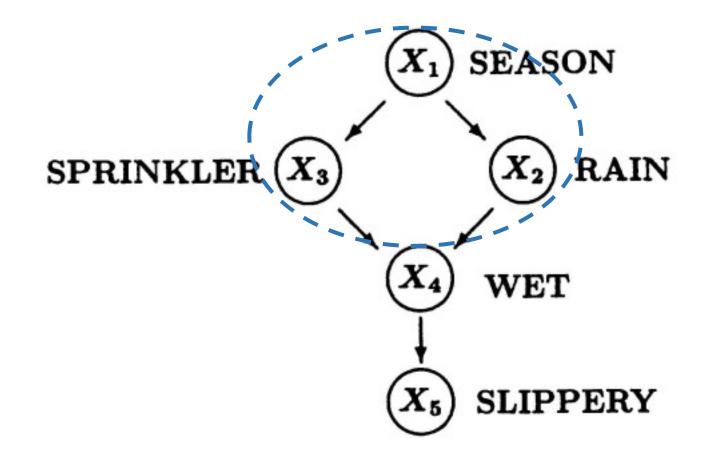
Collider

Confounder

### **CAUSAL STRUCTURES: EXAMPLE**

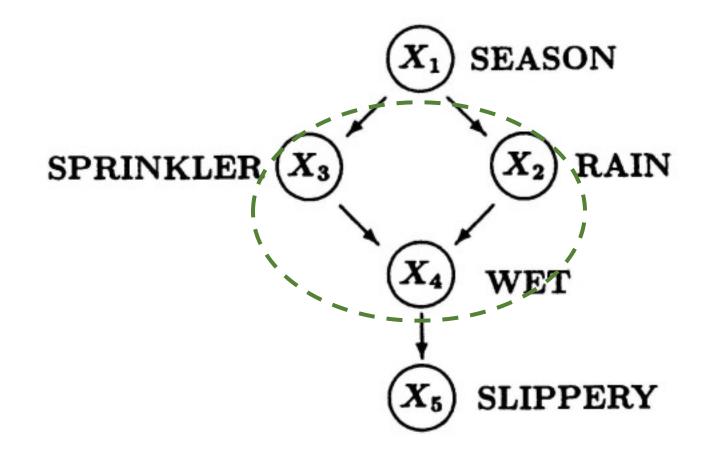


### **CAUSAL STRUCTURES: EXAMPLE**



### Confounder

### **CAUSAL STRUCTURES: EXAMPLE**





### **LEVELS OF INVESTIGATION**

Causal Discovery (CD)

Given a set of variables,

is it possible to **determine the** 

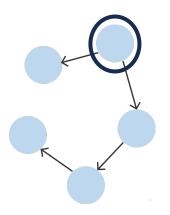
causal relationship

between them?

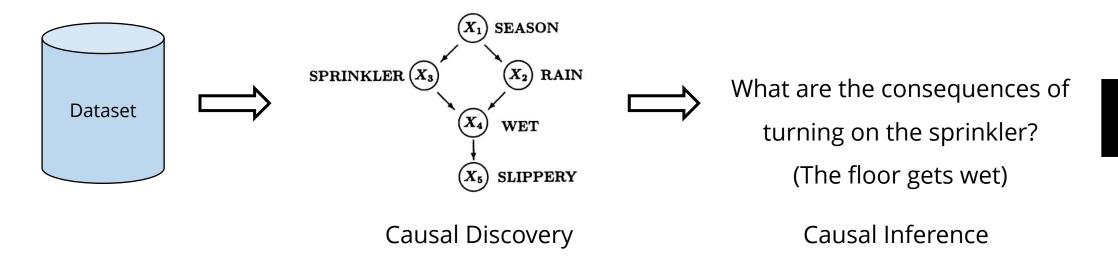
| А   | В   | С   | D   | Е   | 2 |
|-----|-----|-----|-----|-----|---|
| 3.2 | 2.2 | 1.6 | 7.5 | 2.4 |   |
| 2.9 | 3.1 | 1.3 | 8.2 | 5.1 |   |
|     |     |     |     |     |   |
|     |     | -   |     |     |   |

Causal Inference (CI)

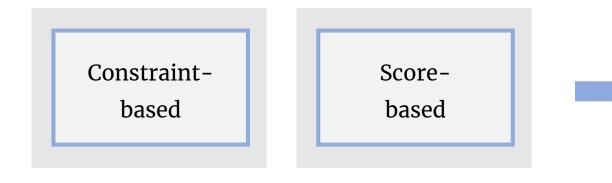
If we manipulate the value of one variable, **how much would the others change**?



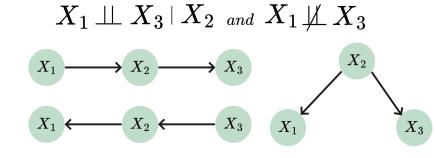
### **CAUSAL PIPELINE**



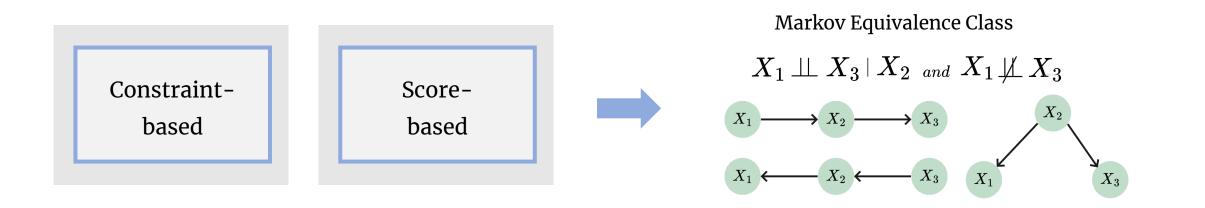
### **CAUSAL DISCOVERY: METHODS**

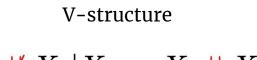


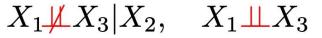
### Markov Equivalence Class

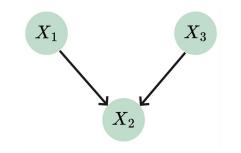


# **CAUSAL DISCOVERY: METHODS**

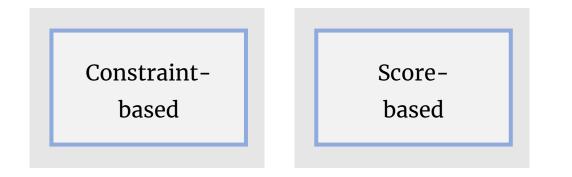








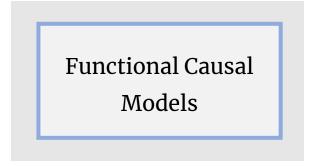
# **CAUSAL DISCOVERY: METHODS**



### Markov Equivalence Class



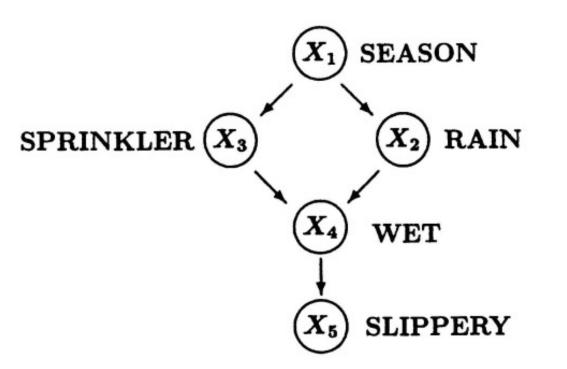






- Strong assumptions but they can uniquely identify the true DAG
- Linear and non-Gaussian, Additive noise, Post-nonlinear

### INTERVENTION

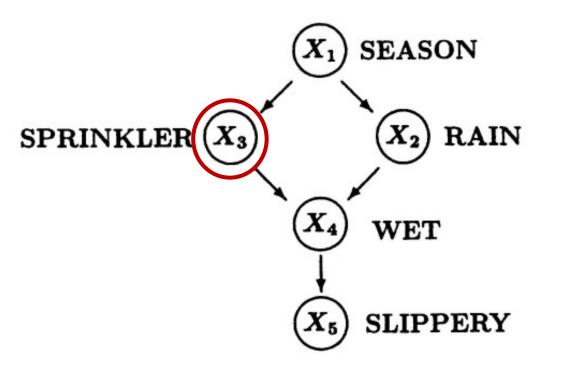


Interpreting edges as cause-effect relationships

enable reasoning about the outcome of

interventions using the do-operator

### **INTERVENTION**

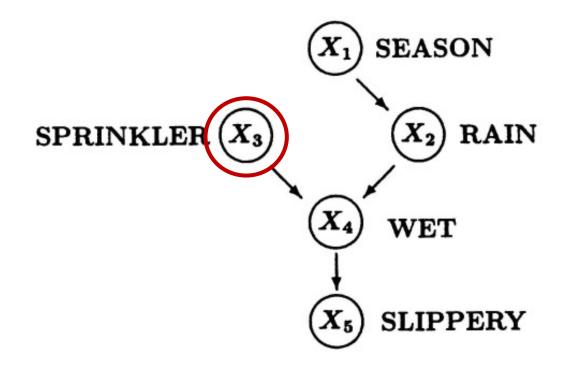


The notation do(Sprinkler := ON) denotes an intervention by which variable Sprinkler is set to value ON.

Externally forcing the variable to assume a particular value makes it **independent of its** causes and breaks their causal influence on it.

### INTERVENTION

Interventional Data

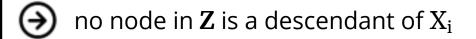


Graphically, the effect of an intervention can be captured by **removing all incoming edges to the intervened variable**.

# **BACK-DOOR CRITERION**

The best-known technique to find causal estimands given a graph.

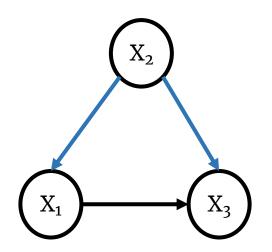
A set of variables **Z** satisfies the **back-door criterion** relative to an ordered pair of variables  $(X_i, X_j)$  in a DAG G if:





 $\mathbf{Z}$  blocks every path between  $X_i$  and  $X_j$  that contains an arrow into  $X_i$ .

### **BACK-DOOR CRITERION: EXAMPLE**



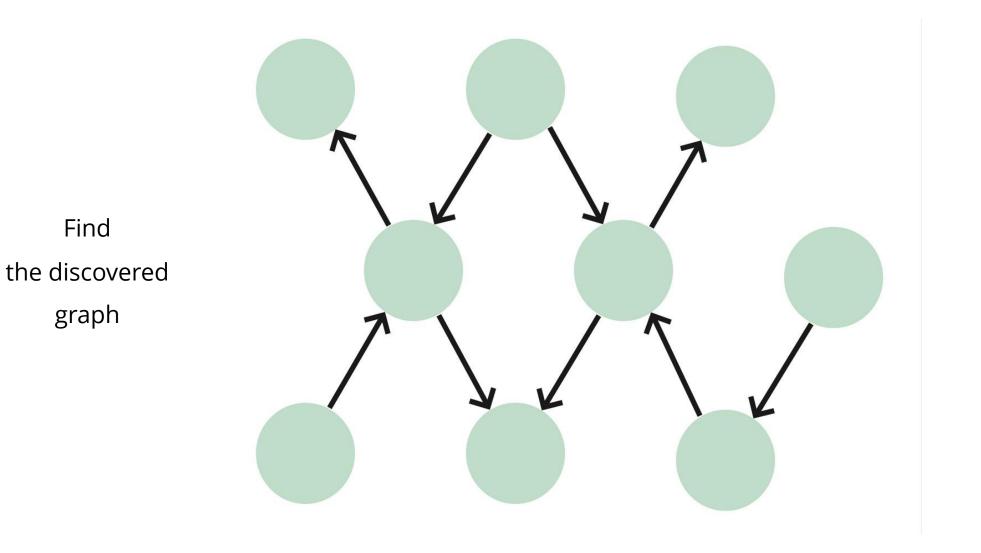
Backdoor path  $X_1 < -X_2 \rightarrow X_3$ 

This path is **not causal**. It is a process that creates **spurious correlations** between  $X_1$  and  $X_3$  that are driven solely by fluctuations in the  $X_2$  random variable.

If we can **close all of the open backdoor paths**, then we can isolate the causal effect of  $X_1$  and  $X_3$  using an identification strategy.

 $P(X_3 | do(X_1) = \sum_{X_2} P(X_3 | X_1, X_2) P(X_2)$ 

### **EXERCISE**





Pearl, Judea, and Dana Mackenzie. The book of why: the new science of cause and effect. Basic books, 2018.

Imbens, Guido W. "Potential outcome and directed acyclic graph approaches to causality: Relevance for empirical practice in economics." *Journal of Economic Literature* 58.4 (2020): 1129-1179.

Nogueira, Ana Rita, et al. "Methods and tools for causal discovery and causal inference." *Wiley interdisciplinary reviews: data mining and knowledge discovery* 12.2 (2022): e1449.

Pearl, Judea, Madelyn Glymour, and Nicholas P. Jewell. *Causal inference in statistics: A primer*. John Wiley & Sons, 2016.

https://www.bradyneal.com/causal-inference-course

# THANK FOR YOUR ATTENTION