Master Program in Data Science and Business Informatics Statistics for Data Science Lesson 06 - Recalls on calculus

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

J. Ward, J. Abdey. Mathematics and Statistics. University of London, 2013. Chapters 1-8 of Part 1.

• Errata-corrige at page 30: $\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + c \cdot b}{b \cdot d}$ and $\frac{a}{b} - \frac{c}{d} = \frac{a \cdot d - c \cdot b}{b \cdot d}$

Sets and functions

- Numerical sets
- ▶ $\mathbb{N} = \{0, 1, 2, ...\}$ [Natural numbers] $\blacktriangleright \mathbb{Z} = \mathbb{N} \cup \{-1, -2, \ldots\}$ [Integers] $\blacktriangleright \mathbb{O} = \{m/n \mid m, n \in \mathbb{Z}, n \neq 0\}$ [Rationals] • $\mathbb{R} = \{ \text{ fractional numbers with possibly infinitely many digits } \supseteq \mathbb{Q} \}$ [Reals] $\blacktriangleright \mathbb{I} = \mathbb{R} \setminus \mathbb{O}$ [Irrationals] \Box v such that $v \cdot v = 2$ belongs to \mathbb{I} Eunctions $\blacktriangleright \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}$ [Cartesian product] ▶ $f: \mathbb{R} \to \mathbb{R}$ is a subset $f \subseteq \mathbb{R} \times \mathbb{R}$ such that $(x, y_0), (x, y_1) \in f$ implies $y_0 = y_1$ [Functions] \Box usually written f(x) = y for $(x, y) \in f$ \Box f(x) = v for all x [Constant functions] $\Box f(x) = a \cdot x + b \text{ for fixed } a, b$ [Linear functions] $\Box f(x) = a \cdot x^2 + b \cdot x + c \text{ for fixed } a, b, c$ [Quadratic functions] \Box $f(x) = \sum_{i=0}^{n} a_i \cdot x^i$ for fixed a_0, \ldots, a_n [Polinomials]

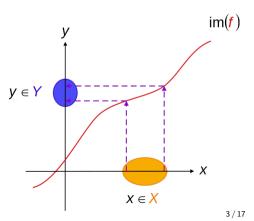
See R script

Functions

•
$$dom(f) = \{x \in \mathbb{R} \mid \exists y \in \mathbb{R}.(x,y) \in f\}$$

• $im(f) = \{y \in \mathbb{R} \mid \exists x \in \mathbb{R}.(x,y) \in f\}$
• $f^{-1} = \{(y,x) \mid (x,y) \in f\}$
• f^{-1} is a function iff f is injective
• $f^{-1}(y) = x$ iff $f(x) = y$
• $f^{-1}(f(x)) = x$ and $f(f^{-1}(y)) = y$
• Examples
• $\sqrt{y} = x$ iff $x^2 = y$ over $x \ge 0$
• $\sqrt[n]{y} = x$ iff $x^n = y$ over $x \ge 0$ [positive root]

[Domain or Support] [Co-domain or Image] [Inverse function, also f^{inv}]



Powers and logarithms

Power laws

The power laws state that

$$a^n \cdot a^m = a^{n+m}$$
 $\frac{a^n}{a^m} = a^{n-m}$ $(a^n)^m = a^{nm}$

provided that both sides of these expressions exist. In particular, we have

$$a^0 = 1$$
 and $a^{-n} = \frac{1}{a^n}$

If it exists, we also define the *positive* nth root of a, written $\sqrt[n]{a}$, to be $a^{\frac{1}{n}}$.

•
$$log_a(y) = x$$
 iff $a^x = y$ for $a \neq 1, x > 0$

- for $n/m \in \mathbb{Q}$: $a^{n/m} \stackrel{\text{def}}{=} \sqrt[m]{a^n}$
- what is a^x for $x \in \mathbb{I}$?

and
$$a^{x} = (e^{\log_{e}(a)})^{x} = e^{x \cdot \log_{e}(a)}$$

• $X \sim Poi(\mu), \quad \sum_{k=0}^{\infty} \frac{\mu^{k}}{k!} e^{-\mu} = e^{-\mu} \sum_{k=0}^{\infty} \frac{\mu^{k}}{k!} = e^{-\mu} \cdot e^{\mu} = 1$
See R script

[Logarithms]

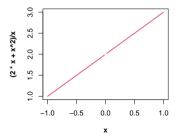
Limits

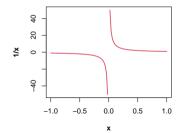
For a function f(), and $a \in \mathbb{R} \cup \{-\infty, \infty\}$

$$\lim_{x \to a} f(x) = L$$
 or $f(x) \to L$ as $x \to a$

if f(x) can be made as close to L as desired, by making x close enough, but not equal, to a.

- Example: $\lim_{x\to 0} \frac{2 \cdot x + x^2}{x} = 2$
- A function f() is called *continuous* at c, if $\lim_{x\to c} f(x) = f(c)$





• The limit may not exist, e.g., $\lim_{x\to 0} 1/x$

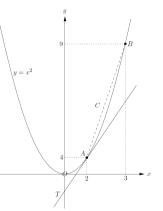
Gradient and derivatives

• The gradient of a straight line is a measure of how 'steep' the line is.

$$y = a \cdot x + b$$

a is the gradient and b the intercept (at x = 0) • For $y = f(x) = x^2$? • Tangent at x = a is $y = m \cdot x + b$ • $m = \frac{f(a+\delta)-f(a)}{\delta} = \frac{2 \cdot a \cdot \delta + \delta^2}{\delta} \rightarrow 2 \cdot a \text{ for } \delta \rightarrow 0$ • $b = 2 \cdot a - a^2$ because $m \cdot a + b = a^2$ • More in general? For y = f(x), m = f'(x)• $f'(x) = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{s}$ is called the **derivative** of f(), • f'(x) also written $\frac{\delta f}{\delta x}$ or $\frac{df}{dx}$ Not all functions are differentiable!

See R script or this Colab Notebook



Derivatives

Standard derivatives

- If k is a constant, then f(x) = k gives f'(x) = 0.
- If $k \neq 0$ is a constant, then $f(x) = x^k$ gives $f'(x) = kx^{k-1}$.

•
$$f(x) = e^x$$
 gives $f'(x) = e^x$.

•
$$f(x) = \ln x$$
 gives $f'(x) = \frac{1}{x}$

• Constant multiple rule:

$$\frac{d}{dx}[k \cdot f(x)] = k \cdot \frac{df}{dx}(x)$$

• Sum rule:

$$\frac{d}{dx}[f(x) + g(x)] = \frac{df}{dx}(x) + \frac{dg}{dx}(x)$$

Derivatives

• Product rule:

$$\frac{d}{dx}[f(x) \cdot g(x)] = \frac{df}{dx}(x) \cdot g(x) + f(x) \cdot \frac{dg}{dx}(x)$$

• Quotient rule:

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \left[\frac{df}{dx}(x) \cdot g(x) - f(x) \cdot \frac{dg}{dx}(x)\right] \cdot \frac{1}{g(x)^2}$$

• Chain rule:

$$\frac{d}{dx}[f(g(x))] = \frac{df}{dg}(g(x)) \cdot \frac{dg}{dx}(x)$$

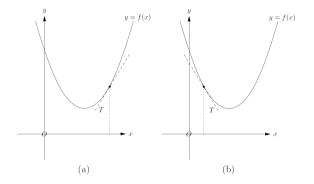
- $\frac{d}{dx}e^{-x} = \dots$
- Inverse rule:

$$rac{d}{dx}[f^{-1}(x)] = rac{1}{rac{df}{dx}(f^{-1}(x))}$$

• $\frac{d}{dx}\log x = \dots$

See R script or this Colab Notebook

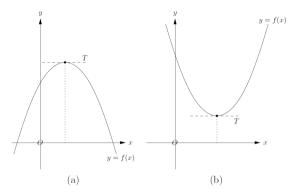
Optimization



- f'(x) > 0 implies f() is increasing at x
- f'(x) < 0 implies f() is decreasing at x
- f'(x) = 0 we cannot say

[Stationary point]

Optimization - second derivatives



- f''(x) < 0 implies f(x) is a maximum
- f''(x) > 0 implies f(x) is a minimum
- f''(x) = 0 we cannot say

[Maximum, minimum, or point of inflection]

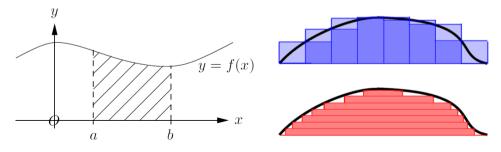
See this Colab Notebook

Integration

- Given f(x), what is F(x) such that $f(x) = \frac{d}{dx}F(x)$? i.e., such that F'(x) = f(x)
- Quick answer: $F(x) = \int_{-\infty}^{x} f(t) dt$
 - Integration is the inverse of differentiation

[Fundamental theorem of calculus]

- Geometrical definition of integrals:
 - $\int_{a}^{b} f(x) dx$ is the area below f(x)
 - defined as approximation of domain partitioning (Riemann–Darboux integrals) or image partitioning (Lebesgue integrals)



Key concepts in integration

If F(x) is a function whose derivative is the function f(x), then we have

$$\int f(x) \, \mathrm{d}x = F(x) + c,$$

where c is an arbitrary constant. In particular, we call the

- function, f(x), the *integrand* as it is what we are integrating,
- function, F(x), an *antiderivative* as its derivative is f(x),
- constant, c, a constant of integration which is completely arbitrary,[†] and
- integral, $\int f(x) dx$, an *indefinite integral* since, in the result, c is arbitrary.
- Definite integrals over an interval [a, b]:

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Integration

Standard integrals If $k \neq -1$ is a constant, then $\int x^k dx = \frac{x^{k+1}}{k+1} + c$. In particular, if k = 0, we have $\int 1 dx = \int x^0 dx = x + c$. $\int x^{-1} dx = \ln |x| + c$. $\int e^x dx = e^x + c$.

• Constant multiple rule:

$$\int [k \cdot f(x)] dx = k \cdot \int f(x) dx$$

•

Sum rule:

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

See R script

Integration by parts

1 . 1

• From the product rule of derivatives:

$$\frac{d}{dx}[f(x) \cdot g(x)] = \frac{df}{dx}(x) \cdot g(x) + f(x) \cdot \frac{dg}{dx}(x)$$

• take the inverse of both sides:

$$f(x) \cdot g(x) = \int f'(x) \cdot g(x) dx + \int f(x) \cdot g'(x) dx$$

• and then:

$$\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) dx$$
• $\int \lambda x e^{-\lambda x} dx = \dots = -e^{-\lambda x} (x + 1/\lambda)$

Integration by change of variable

• Change of variable rule:

$$\int f(y)dy =_{y=g(x)} \int f(g(x))g'(x)dx$$

•
$$\int \frac{\log x}{x} dx = \int y dy = \frac{y^2}{2}$$
 for $y = \log x$ hence, $\int \frac{\log x}{x} dx = \frac{(\log x)^2}{2}$
• consider $f(y) = y$ and $g(x) = \log x$

Functions of two or more variables

• Symmetry of second derivatives

[Schwarz's theorem]

$$\frac{d}{dx}\frac{d}{dy}f(x,y) = \frac{d}{dy}\frac{d}{dx}f(x,y)$$

• Leibniz integral rule

$$\frac{d}{dx} \int_{a}^{b} f(x, y) dy = \int_{a}^{b} \frac{d}{dx} f(x, y) dy$$
• Gradient (pronounced "del") [direction and function of the second se

[direction and rate of fastest increase]

$$\nabla f(x,y) = \left(\begin{array}{c} \frac{d}{dx}f(x,y)\\ \frac{d}{dy}f(x,y)\end{array}\right)$$

• Hessian matrix (2 × 2 case):

[Generalize the second derivative test for max/min]

$$\mathbf{H}_{2}(x,y) = \left(\begin{array}{cc} \frac{d}{dx}\frac{d}{dx}f(x,y) & \frac{d}{dx}\frac{d}{dy}f(x,y)\\ \frac{d}{dy}\frac{d}{dx}f(x,y) & \frac{d}{dy}\frac{d}{dy}f(x,y) \end{array}\right)$$

Feyman's trick

$$F(t) = \int_0^\infty e^{-tx} dx = \left[-\frac{e^{-tx}}{t}\right]_0^\infty = \frac{1}{t}$$

• using Leibniz integral rule

$$\frac{d}{dt}F(t) = \frac{d}{dt}\int_0^\infty e^{-tx}dx = \int_0^\infty \frac{d}{dt}e^{-tx}dx = -\int_0^\infty xe^{-tx}dx = -\frac{1}{t^2}$$

• Taking further derivatives yields:

$$\int_0^\infty x^{n-1} e^{-tx} dx = \frac{(n-1)!}{t^n}$$

and for t = 1:

$$\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx = (n-1)!$$

[Euler's $\Gamma(n)$]