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Discrete random variables

• Support finite or countable {a1, . . . , an, . . .}
▶ p(ai ) > 0 for i = 1, 2, . . .
▶ p(a) = 0 if a ̸∈ {a1, a2, . . .}
▶

∑
i p(ai ) = 1

• What happens when the support is uncountable? E.g., [0, 1] or R+ or R
▶ Many observations belong to the continuum (time, height, weight, blood pressure,

temperature, distance, speed, etc.)
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Discrete random variables

• Le X with support {0, 1}
▶ p(a) = P(X = a) = 1/2 for a in the support

• Assume to expand the support to {0, 1/n, 2/n, . . . , n/n−1, 1}
▶ p(a) = P(X = a) = 1/(n+1) for a in the support

• Ok for n ∈ N, but for n → ∞, we have:

p(a) = P(X = a) = 0 for all a

which break the requirements of distribution function!

• Since |R| = 2ℵ0 > ℵ0 = |N|, n = ∞ is reached when considering the continuum!

• Conclusion: the idea of probability mass function does not extend to the continuum!
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Continuous random variables
• We cannot assign a “mass” to a real number, but we can assign it to an interval!

• Support of X is {x ∈ R | f (x) > 0}
• F (a) = P(X ≤ a) =

∫ a

−∞ f (x)dx [Cumulative Distribution Function]4 / 19



Density function

P(X = a) ≤ P(a− ϵ ≤ X ≤ a+ ϵ) =

∫ a+ϵ

a−ϵ

f (x)dx = F (a+ ϵ)− F (a− ϵ)

▶ for ϵ → 0, P(a− ϵ ≤ X ≤ a+ ϵ) → 0, hence P(X = a) = 0

• What is the meaning of the density function f (x)?
▶ f (a) is a (relative) measure of how likely is X will be near a
▶ “probability mass per unit length” around a: f (a) · 2ϵ

• Discrete vs Continuous Random Variables

F (a) =
∑
ai≤a

p(ai ) p(ai ) = F (ai )− F (ai−1) F (x) =

∫ x

−∞
f (y)dy f (x) =

d

dx
F (x)
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X ∼ U(α, β)

• F (x) =
∫ x
−∞ f (x)dx = 1

β−α

∫ x
α 1dx = x−α

β−α for α ≤ x ≤ β

• Differently from p.m.f.’s, densities can be larger than 1 (and arbitrarily large)
▶ E.g., for U(0, 0.5) we have f (x) = 2

See R script
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X ∼ Exp(λ)

• For X ∼ Geo(p), we have: F (x) = P(X ≤ x) = 1− (1− p)⌊x⌋ for x ≥ 0

• extend to reals: F (x) = P(X ≤ x) = 1− (1− p)x = 1− ex ·log(1−p) = 1− e−λx

for λ = −log(1− p)• f (x) = dF
dx (x) = λe−λx

• λ is the rate of events in a Poisson point process, i.e., a process in which events occur
continuously and independently at a constant average rate, e.g.,

▶ λ = 1/10 number of bus arrivals per minute, or 1/λ = 10 minutes to wait for bus arrival
▶ P(X > 1) = 1− P(X ≤ 1) = e−λ = 0.9048 probability of waiting more than 1 minute.
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X ∼ Exp(λ)

• Plausible and empirically adequate model for:
▶ time until a radioactive particle decays, time it takes before your next telephone call, . . .
▶ time until default (on payment to company debt holders) in reduced-form credit risk

modeling, . . .
▶ time between animal roadkills, time between bank teller serves customers, . . .
▶ monthly and annual maximum values of daily rainfall, (some types of) surgery duration, . . .

• Exponential is memoryless: P(X > s + t|X > s) = e−λ·(s+t)/e−λ·s = e−λ·t = P(X > t)

See R script and seeing-theory.brown.edu
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X ∼ N(µ, σ2)

• “Normal” means “typical” or “common”

• Also called Gaussian distribution, after Carl Friedrich Gauss

• Standard Normal/Gaussian is N(0, 1)

▶ f (x) = 1√
2π
e−

x2

2 sometimes written as ϕ(x)

▶ No closed form for F (a) = Φ(a) =
∫ a

−∞ ϕ(x)dx

• Binomial approximation by a Normal distribution
▶ Bin(n, p) ≈ N(np, np(1− p)) for n large and 0 ≪ p ≪ 1 [De Moivre–Laplace theorem]
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CCDF of Z ∼ N(0, 1)

• E.g., P(Z > 1.04) = 0.1492
• And in general for X ∼ N(µ, σ2)?

▶ Use identity P(X ≥ a) = P(Z ≥ a−µ
σ ) [Proof in future lessons]

See R script
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Quantiles

• Median mX is q0.5
• If F () is strictly increasing, qp = F−1(p)

• E.g., for Exp(λ), F (a) = 1− e−λx , hence F−1(p) = 1
λ log 1

(1−p)

See R script
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Joint distributions: continuous random variables

• The marginal density functions of X and Y are:

fX (x) =

∫ ∞

−∞
f (x , y)dy fY (y) =

∫ ∞

−∞
f (x , y)dx

• Moreover, as in the univariate case:

F (a, b) =

∫ a

−∞

∫ b

−∞
f (x , y)dxdy f (x , y) =

d

dx

d

dy
F (x , y) =

d2

dxdy
F (x , y)

See R script
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Recalling conditional distribution

Conditional distribution
Consider the joint distribution PXY of X and Y . The conditional distribution of X
given Y ∈ B with PY (Y ∈ B) > 0, is the function FX |Y∈B : R → [0, 1]:

FX |Y∈B(a) = PX |Y (X ≤ a|Y ∈ B) =
PXY (X ≤ a,Y ∈ B)

PY (Y ∈ B)
for −∞ < a < ∞

• Distribution of X after knowing Y ∈ B.

• Chain rule: PXY (X ≤ a,Y ∈ B) = PX |Y (X ≤ a|Y ∈ B)PY (Y ∈ B)

• What if the distribution does not change w.r.t. the prior PX ? 13 / 19



Independence of two random variables

Independence X ⊥⊥ Y

A random variable X is independent from a random variable Y , if for all P(Y ≤ b) > 0:

PX |Y (X ≤ a|Y ≤ b) = PX (X ≤ a) for −∞ < a < ∞

• Properties
▶ X ⊥⊥ Y iff PXY (X ≤ a,Y ≤ b) = PX (X ≤ a) · PY (Y ≤ b) for −∞ < a, b < ∞
▶ X ⊥⊥ Y iff Y ⊥⊥ X [Symmetry]

• For X ,Y continuous random variables:
▶ X ⊥⊥ Y iff fXY (x , y) = fX (x) · fY (y) for −∞ < x , y < ∞
▶ Exercise at home. Prove it!
▶ X ⊥⊥ Y iff PXY (X ∈ A,Y ∈ B) = PX (X ∈ A) · PY (Y ∈ B) for A,B ⊆ R integrable

See R script
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Independence of multiple random variables

Independence (factorization formula)

Random variables X1, . . . ,Xn are independent, if:

P(X1 ≤ a1, . . . ,Xn ≤ an) =
n∏

i=1

P(Xi ≤ ai ) for −∞ < a1, . . . , an < ∞

• X1, . . . ,Xn continuous random variables are independent iff:

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

fXi (xi ) for −∞ < x1, . . . , xn < ∞

• Definition: X1, . . . ,Xn are i.i.d. (independent and identically distributed) if X1, . . . ,Xn are
independent and Xi ∼ F for i = 1, . . . , n for some distribution F
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Sum of independent continuous random variables

• The integral is called the convolution of fX () and fY ()
• X ,Y ∼ Exp(λ), Z = X + Y , X ,Y ,Z ≥ 0 implies 0 ≤ Y ≤ Z

fZ (z) =

∫ ∞

−∞
λe−λ(z−y)λe−λydy = λ2e−λz

∫ z

0
1dy = λ2e−λzz

• Z = X1 + . . .+ Xn for Xi ∼ Exp(λ) independent: [Earlang Erl(n, λ) distribution]

fZ (z) =
λ(λz)n−1e−λz

(n − 1)!
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Gam(α, λ)

• Let λ be some average rate of an event, e.g., λ = 1/10 number of buses in a minute

• The waiting times to see an event is Exponentially distributed. E.g., probability of waiting x
minutes to see one bus.

• The waiting times between n occurrences of an event are Erlang distributed. E.g., probability of
waiting z minutes to see n buses.

• Extends Erl(n, λ) from n ∈ N to α ∈ R+ by Euler’s Γ(α) =
∫∞
0

tα−1e−tdt [Γ(n) = (n − 1)!]

• Plausible and empirically adequate model for:
▶ size of insurance claims, size of rainfalls, age distribution of cancer incidence, . . .

See R script 17 / 19



Common distributions

• Probability distributions at Wikipedia

• Probability distributions in R

• C. Forbes, M. Evans,
N. Hastings, B. Peacock (2010)
Statistical Distributions, 4th Edition
Wiley
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The continuous Bayes’ rule

• Definition. Conditional density of X given Y = y with fY (y) > 0:

fX |Y (x |y) =
fXY (x , y)

fY (y)

• Continuous Bayes’ rule:

fX |Y (x |y) =
fY |X (y |x)fX (x)

fY (y)
=

fY |X (y |x)fX (x)∫∞
−∞ fY |X (y |t)fX (t)dt

• Exercise at home. A light bulb has a life-time X ∼ Exp(λ). λ is known to be ∼ U(1, 1.5). What
can we say about the distribution of λ give observed life-time x? Code your solution also in R.
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