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Expectation of a discrete random variable

• Buy lottery ticket every week, p = 1/10000, what is probability of winning at k th week?

X ∼ Geo(p) P(X = k) = (1− p)k−1 · p for k = 1, 2, . . .

• What is the average number of weeks to wait (expected) before winning?

E [X ] =
∞∑
k=1

k · (1− p)k−1 · p =
1

p

because
∑∞

k=1 k · xk−1 = 1/(1−x)2

• Expected value, mean value (weighted by probability of occurrence), center of gravity

See seeing-theory.brown.edu
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https://seeing-theory.brown.edu/basic-probability/index.html


Expected value may be infinite or may not exist!

• Fair coin: win 2k euros if first H appears at kth toss [St. Petersburg paradox]
▶ X with p.m.f. p(2k) = 2−k for k = 1, 2, . . .

▶ p() is a p.m.f. since
∑∞

k=1 2
−k = 1 using

∑∞
k=0 a

k = 1
1−a for |a| < 1

▶ E [X ] =
∑∞

k=1 2
k · 2−k =

∑∞
k=1 1 = ∞

• Expectation does not exist when
∑

i aip(ai ) does not converge
▶ X with p.m.f. p(2k) = p(−2k) = 2−k for k = 2, 3, . . .

▶ E [X ] =
∑∞

k=2(2
k · 2−k − 2k · 2−k) =

∑∞
k=2(1− 1) = 0 wrong!

▶ E [X ] =
∑∞

k=2 2
k · 2−k −

∑∞
k=2 2

k · 2−k = ∞−∞ undefined

▶ E [X ] is finite if
∑

i |ai |p(ai ) < ∞
▶ In the case above,

∑∞
k=2(|2k | · 2−k + | − 2k | · 2−k) = ∞
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https://en.wikipedia.org/wiki/St._Petersburg_paradox


Expectation of some discrete distributions

• Expectation of some discrete distributions
▶ X ∼ U(m,M) E [X ] = (m+M)/2

□
∑M

i=m
i

M−m+1
= 1

M−m+1

∑M−m
i=0 (m + i) = m + (M −m)/2 = m+M

2

▶ X ∼ Ber(p) E [X ] = p
□ 0 · (1− p) + 1 · p = p [Mean may not belong to the support]

▶ X ∼ Bin(n, p) E [X ] = n · p
□ Because . . . we’ll see later

▶ X ∼ NBin(n, p) E [X ] = n·p
1−p

□ Because . . . we’ll see later

▶ X ∼ Poi(µ) E [X ] = µ
□ Because, when n → ∞: Bin(n, µ/n) → Poi(µ)
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Expectation of a continuous random variable

• Expectation of some continuous distributions
▶ X ∼ U(α, β) E [X ] = (α+ β)/2
▶ X ∼ Exp(λ) E [X ] = 1/λ

□ Because
∫∞
0

xλe−λxdx =
[
−e−λx(x + 1/λ)

]∞
0

= e0(0 + 1/λ) [See Lesson 06]

▶ X ∼ N(µ, σ2) E [X ] = µ

□ Because:
∫∞
−∞ x 1

σ
√
2π
e−

1
2
( x−µ

σ
)2dx = µ+

∫∞
−∞(x − µ) 1

σ
√
2π
e−

1
2
( x−µ

σ
)2dx =

z= x−µ
σ

= µ+ σ
∫∞
−∞ z 1√

2π
e−

1
2
z2dz = µ

▶ X ∼ Erl(n, λ) E [X ] = n/λ
□ Because . . . we’ll see later
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Expected value may not exists!

• Cauchy distribution

f (x) =
1

π(1 + x2)

• X1,X2 ∼ N(0, 1) i.i.d., X = X1/X2 ∼ Cau(0, 1)

E [X ] =

∫ 0

−∞
xf (x)dx +

∫ ∞

0
xf (x)dx

•
∫ 0
−∞ xf (x)dx =

[
1
2π log(1 + x2)

]0
−∞ = −∞

•
∫∞
0 xf (x)dx =

[
1
2π log(1 + x2)

]∞
0

= ∞

E [X ] = −∞+∞

• E [X ] is finite if
∫∞
−∞ |x |f (x)dx < ∞

Mean value does not always make sense in your data analytics project!
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E [g(X )] ̸= g(E [X ])

• Recall that velocity = space/time, and then time = space/velocity !

• Vector v of speed (Km/h) to reach school and their probabilities p using feet, bike, bus,
train:

v = c(5, 10, 20, 30) p = c(0.1, 0.4, 0.25, 0.25)

• Distance house-schools is 2 Km
• What is the average time to reach school?

▶ 2/sum(v*p) i.e., space/E[velocity]
▶ sum(2/v*p) i.e., E[space/velocity]

• X = velocity, g(X ) = 2/X time to reach school
▶ E [g(X )] ̸= g(E [X ])
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The change of variable formula (or rule of the lazy statistician)
• X ∼ U(0, 10), width of a square field, E [X ] = 5
• g(X ) = X 2 is the area of the field, E [g(X )] = ? [E [g(X )] ̸= g(E [X ])]
• Fg (a) = P(g(X ) ≤ a) = P(X ≤

√
a) =

√
a/10 for 0 ≤ a ≤ 100

• Hence, fg (a) = dFg (a)/da = 1/20
√
a [later on, a general theorem]

• E [g(X )] = 1
20

∫ 100

0
x√
x
dx = 1

20
2
3

[
x 3/2

]100
0

= 100/3

• Alternatively, E [g(X )] =
∫ 10

0
x2 1

10dx = 1
10

1
3

[
x3
]10
0

= 100/3

See R script
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Change of units

Theorem (Change of units)

E [rX + s] = rE [X ] + s

• Example: for Y = 1.8X + 32, we have E [Y ] = 1.8E [X ] + 32 [Celsius to Fahrenheit]

• Corollary.
E [X − E [X ]] = E [X ]− E [X ] = 0

• Theorem. Expectation minimizes the square error, i.e., for a ∈ R:

E [(X − E [X ])2] ≤ E [(X − a)2]

▶ Proof. (sketch) set d
da

∫∞
−∞(x − a)2f (x)dx = 0
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Entropy of a random variable

• The Shannon’s information entropy is the average level of “information”, “surprise”, or
“uncertainty” inherent to the variable’s possible outcomes

▶ Information is inversely proportional to probability 1
p(ai )

□ Highly likely events carry very little new information
□ Highly unlikely events carry more information

▶ Information content ic() of two independent events should sum up log 1
p(ai )

□ ic(p(A ∪ B)) = ic(p(A)) + ic(p(B)) = ic(p(A)p(B))
□ ic(p(Ω)) = ic(1) = 0
□ ic(p(A)) ≥ 0

• H(X ) = E [− log p(X )] (discrete) H(X ) = E [− log f (X )] (continuous)

H(X ) = −
∑
i

p(ai ) log p(ai ) H(X ) = −
∫ ∞

−∞
f (x) log f (x)dx

▶ For X discrete, H(X ) ≥ 0 since − log p(X ) = log 1/p(X ) ≥ 0
□ reached when p(a1) = 1 and p(ai ) = 0 for i ̸= 1

▶ For X ∼ Ber(p), H(X ) = −p log p − (1− p) log (1− p)

See R script 10 / 27
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Computation with discrete random variables

Theorem

For a discrete random variable X , the p.m.f. of Y = g(X ) is:

PY (Y = y) =
∑

g(x)=y

PX (X = x) =
∑

x∈g−1(y)

PX (X = x)

• Proof. {Y = y} = {g(X ) = y} = {x ∈ g−1(y)}
• Corollary (the change-of-variable formula):

E [g(X )] =
∑
y

yPY (Y = y) =
∑
y

y
∑

g(x)=y

PX (X = x) =
∑
x

g(x)PX (X = x)
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Example

• X ∼ U(1, 200) number of tickets sold
• Capacity is 150
• Y = max{X − 150, 0} overbooked tickets

PY (Y = y) =

{
150/200 if y = 0 g−1(0) = {1, . . . , 150}
1/200 if 1 ≤ y ≤ 50 g−1(y) = {y + 150}

• Hence:

E [Y ] = 0 · 150
200

+
1

200
·

50∑
y=1

y = 6.375

• or using the change-of-variable formula:

E [Y ] =
1

200
·
200∑
x=1

max{X − 150, 0} =
1

200
·

200∑
x=151

(X − 150) = 6.375
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Computation with continuous random variables

Theorem

For a continuous random variable X , the density functions of Y = g(X )
when g() is increasing/decreasing are:

FY (y) = FX (g
−1(y)) fY (y) = fX (g

−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣
• Proof. (for g() increasing) Since g() is invertible and g(x) ≤ y iff x ≤ g−1(y):

FY (y) = PY (g(X ) ≤ y) = PX (X ≤ g−1(y)) = FX (g
−1(y))

and then:

fY (y) =
dFY (y)

dy
=

dFX (g
−1(y))

dy
=

dFX (g
−1(y))

dg−1

dg−1(y)

dy
= fX (g

−1(y))
dg−1(y)

dy

Exercise: show the case g() decreasing!
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Change of units

• For X ∼ N(µ, σ2), how is Z = X
σ + −µ

σ = X−µ
σ distributed?

• fZ (z) = σfX (σy + µ) = 1√
2π
e−

1
2
y2

• Hence, Z ∼ N(0, 1)
• In particular, for X ∼ N(µ, σ2), we have:

P(X ≤ a) = P(Z ≤ a− µ

σ
) = Φ(

a− µ

σ
)
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Example: Λ(µ, σ2)

Log-normal distribution Y = eX for X ∼ N(µ, σ2), i.e., log(Y ) ∼ N(µ, σ2)

• Y = g(X ) = eX Support is ]0,∞[

• g(x) = ex is increasing, and g−1(y) = log y , and dg−1(y)
dy = 1

y

FY (y) = FX (g
−1(y)) = Φ(

log y − µ

σ
) fY (y) = fX (g

−1(y))
dg−1(y)

dy
=

1

yσ
√
2π

e−
1
2 (

log y−µ
σ )2

• E [g(X )] =
∫∞
−∞ g(x)fX (x)dx =

∫∞
−∞ yfY (y)dy = eµ+σ2/2

• Plausible and empirically adequate model for:
▶ length of comments in posts, dwell time reading online articles, length of chess games, . . .
▶ size of living tissue, number of hospitalized cases in epidemics, blood pressure, . . .
▶ income of 97%–99% of the population, the number of citations, log of city size, . . .
▶ times to repair a maintainable system, size of audio-video files, amount of internet traffic per

unit time, . . .
See R script
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Common distributions

• Probability distributions at Wikipedia

• Probability distributions in R

• C. Forbes, M. Evans,
N. Hastings, B. Peacock (2010)
Statistical Distributions, 4th Edition
Wiley
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Example

• X ∼ U(0, 1) radius fX (x) = 1 FX (x) = x for x ∈ [0, 1]

• Y = g(X ) = π · X 2 Support is [0, π]

• g(x) = πx2 is increasing, and g−1(y) =
√

y
π , and

dg−1(y)
dy = 1

2
√
πy

FY (y) = FX (g
−1(y)) =

√
y

π
fY (y) = fX (g

−1(y))
dg−1(y)

dy
=

1

2
√
πy

Do not lift distributions from a data column
to a derived column in your data analytics project!

See R script

• Notice that: g(E [X ]) = π/4 ≤ E [g(X )] =
∫ 1
0 g(x)fX (x)dx =

∫ π
0 yfY (y)dy = π

3
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Jensen’s inequality

• f () is convex if f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2) for t ∈ [0, 1]

• if f ′′(x) ≥ 0 then f () is convex, e.g., g(x) = πx2 or g(x) = 1/x for x ≥ 0
18 / 27



Corollary and Example

Corollary (see [T, Ex. 8.11]. For a concave function g , namely g ′′(x) ≤ 0: g(E [X ]) ≥ E [g(X )]

• log (x) is concave since log′′ (x) = −1/x2 ≤ 0

• Let X be discrete with finite domain of n elements

▶ By corollary above:

H(X ) = E [log
1

p(X )
] ≤ log E [

1

p(X )
]

▶ By change of variable:

E [
1

p(X )
] =

∑
i

p(ai )

p(ai )
= n

and then maximum entropy is:
H(X ) ≤ log n

▶ E.g., X ∼ Ber(p), maximum entropy (uncertainty) for equiprobable events p = 1/2
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Variance

• Investment A. P(X = 450) = 0.5 P(X = 550) = 0.5 E [X ] = 500

• Investment B. P(X = 0) = 0.5 P(X = 1000) = 0.5 E [X ] = 500

• Spread around the mean is important!

Variance and standard deviations

The variance Var(X ) of a random variable X is the number:

Var(X ) = E [(X − E [X ])2]

σX =
√
Var(X ) is called the standard deviation of X .

• The standard deviation has the same dimension as E [X ] (and as X )

• For X discrete, Var(X ) =
∑

i (ai − E [X ])2p(ai )

• Investment A. Var(X ) = 502 and σX = 50

• Investment B. Var(X ) = 5002 and σX = 500
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Examples

• For a ∈ R:
E [|X − a|] ≤

√
E [(X − a)2]

▶ Apply Jensen’s ineq. for g(y) = y2 convex on the r.v. Y = |X − a|
• Median minimizes absolute deviation, i.e., for a ∈ R:

E [|X −mX |] ≤ E [|X − a|]

▶ Prove it! (for continuous functions) Hint: d
dx |x | = x/|x |

• Maximum distance between expectation and median:

|E [X ]−mX | ≤ E [|X −mX |] ≤ E [|X − E [X ]|] ≤
√
E [(X − E [X ])2] = σX

▶ Apply Jensen’s ineq. for g(y) = |y | convex on the r.v. Y = X −mX plus two results above
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Mode

• For discrete r.v. X with p.m..f. p(): the values a such that p(a) is maximum, i.e.:

argmax
a

p(a)

▶ Can be more than one, e.g., in Ber(0.5)
• For continuous r.v. X with d.f. f (): the values x such that f (x) is a local maximum, e.g.:

f ′(x) = 0 and f ′′(x) < 0

▶ Notice: local maximum!
• Unimodal distribution = that have only one mode
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Variance

Theorem. Var(X ) = E [X 2]− E [X ]2

Proof.

Var(X ) = E [(X − E [X ])(X − E [X ])]

= E [X 2 + E [X ]2 − 2XE [X ]]

= E [X 2] + E [X ]2 − E [2XE [X ]]

= E [X 2] + E [X ]2 − 2E [X ]E [X ] = E [X 2]− E [X ]2

• E [X 2] is called the second moment of X
∫∞
−∞ x2f (x)dx

Corollary.
Var(rX + s) = r2Var(X )

Prove it!

• Variance insensitive to shift s!
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Variance may be infinite or may not exist!
Standard deviation σX is a measure of the margin of error around a predicted value (e.g., temperature
“20± 1.5”).
An infinite or non-existent margin of error is no prediction at all.

• Variance may not exists!
▶ If expectation does not exist!
▶ Also in cases when expectation exists

□ We’ll see later Power laws.

• Variance can be infinite
▶ Distributions have fat upper tails that decrease at an extremely slow rate.
▶ The slow decay of probability increases the odds of very extreme values (outliers)
▶ E.g., eX for X ∼ Cau(0, 1) [log-Cauchy distribution]

24 / 27



Variance

• Variance of some discrete distributions

▶ X ∼ U(m,M) E [X ] = (m+M)
2 Var(X ) = (M−m+1)2−1

12

□ use Var(X ) = Var(X −m), call n = M −m + 1 and
∑n−1

i=1 i2 = (n−1)n(2n−1)
6

▶ X ∼ Ber(p) E [X ] = p Var(X ) = p2(1− p) + (1− p)2p = p(1− p)
▶ X ∼ Bin(n, p) E [X ] = n · p Var(X ) = np(1− p)

□ Because . . . we’ll see later

▶ X ∼ Geo(p) E [X ] = 1
p Var(X ) = 1−p

p2

□ Hint: use Var(X ) = E [X 2]− E [X ]2 and
∑∞

k=1 k
2 · xk−1 = 1+x

(1−x)3

▶ X ∼ NBin(n, p) E [X ] = n·p
1−p Var(X ) = n 1−p

p2

□ Because . . . we’ll see later

▶ X ∼ Poi(µ) E [X ] = µ Var(X ) = µ
□ Because, when n → ∞: Bin(n, µ/n) → Poi(µ)

See seeing-theory.brown.edu
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Variance

• Variance of some continuous distributions
▶ X ∼ U(α, β) E [X ] = (α+ β)/2 Var(X ) = (β − α)2/12

□ Prove it! Recall that f (x) = 1/(β−α)

▶ X ∼ Exp(λ) E [X ] = 1/λ Var(X ) = 1/λ2

□ Prove it! Recall that f (x) = λe−λx

▶ X ∼ N(µ, σ2) E [X ] = µ Var(X ) = σ2

□ Prove it! Hint: use z = x−µ
σ

and integration by parts.

▶ X ∼ Erl(n, λ) E [X ] = n/λ Var(X ) = n/λ2

□ Because . . . we’ll see later
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E [] and Var() of random variables with bounded support

Assume a ≤ X ≤ b, or more generally P(a ≤ X ≤ b) = 1 [almost surely or a.s.]
It turns out that expectation and variance are finite!
• a ≤ E [X ] ≤ b

▶ E.g., for X continuous, E [X ] =
∫ b

a
xf (x)dx ≤

∫ b

a
bf (x)dx = b

• 0 ≤ Var(X ) ≤ (b−a)2/4

Proof.
▶ For γ ∈ R, consider E [(X − γ)2] = γ2 − 2γE [X ] + E [X 2]
▶ It is mimimum for γ = E [X ] (consider d

dγ (γ
2 − 2γa+ b))

▶ Thus, E [(X − E [X ])2] = Var(X ) ≤ E [(X − γ)2]
▶ For γ = (a+b)/2, we have (X − γ)2 ≤ (b − γ)2 and then:

Var(X ) ≤ E [(X − (a+ b)

2
)2] ≤ (b − (a+ b)

2
)2 =

(b − a)2

4

• Exercise at home: show that the bound (b−a)2/4 can be reached.
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