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Expectation of a discrete random variable

® Buy lottery ticket every week, p = 1/10000, what is probability of winning at k" week?
X ~ Geo(p) P(X=k)=(1—-p)t-pfork=1,2,...

® What is the average number of weeks to wait (expected) before winning?
> _ 1
EX]=> k- (1-p) T p=2
k=1 P

because >".7, k- x71 = 1/a-xp

DEFINITION. The expectation of a discrete random variable X taking
the values aj,as,... and with probability mass function p is the

number
EX]=Y aP(X =a) = aiplas).

® Expected value, mean value (weighted by probability of occurrence), center of gravity
See seeing-theory.brown.edu
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https://seeing-theory.brown.edu/basic-probability/index.html

Expected value may be infinite or may not exist!

e Fair coin: win 2 euros if first H appears at k" toss [St. Petersburg paradox]
» X with p.m.f. p(2k) =27 for k = 1,2, ...
» p()isapm.f. since ) o, 27k=1 using >0 o ak = 1 for [a| < 1

> E[X] =3 2027 =300 =00
® Expectation does not exist when ) . a;p(a;) does not converge
» X with p.m.f. p(2¥) = p(—2K) =27k for k = 2,3,. ..
E[X] =Y 2,2k - 27k —2k. 27Ky = 5~ (1 —1) = 0 wrong!
EX] =Y po,2k .27k 302 2k . 27K = o0 — oo undefined
E[X] is finite if Y, |aj|p(a;) < oo
In the case above, Y ;2 (|24 - 2% + | — 2K . 27F) = 0

v

v

v

v

3/27


https://en.wikipedia.org/wiki/St._Petersburg_paradox

Expectation of some other discrete distributions

® FExpectation of some other discrete distributions
» X ~U(m, M) E[X]=m+M))>
O 1 = w1 Lo (M) = m o (M —m)/2 = 2
X ~ Ber(p) E[X]=p
00-(1—-p)+1-p=p [Mean may not belong to the support]
X ~ Bin(n,p) E[X]=n-p
U Because ...we'll see later

X ~ NBin(n,p) E[X]= {5

O Because ...we'll see later
X ~ Poi(n) E[X] = p

O Because, when n — oco: Bin(n,#/n) — Poi(u)

v

v

v
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Expectation of a continuous random variable

DEerINITION.  The ezpectation of a continuous random variable X
with probability density function f is the number

® Expectation of some continuous distributions
> X~ U(a,B)  E[X]=(a+5)/2
» X ~ Exp(\)  E[X]=1x
O Because [ xAe Mdx = [—e M (x+Va)] = e"(0+Yx) [See Lesson 06]
> X~ N(p,0%)  EX]=p

O Because: ffoooxm}ge_i(%“ydx =p+ [ (x— M)U\}ge_%(%)de =, _x-u

= M+Uffoooz\/127e_522dz =pu
» X ~ Erl(n,\) E[X]=r1/x
O Because ...we'll see later
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Expected value may not exists!

® Cauchy distribution
1

e )
o X1, Xo ~ N(0,1) i.i.d., X = X1 /Xz ~ Cau(0,1)

0 00

E[X] = /_ xf(x)dx—i—/0 xf(x)dx

o f xf(x)dx = [2 log(1 + x2)](i = —00
° fo xf(x)dx = [% log(1 +X2)}80 =00

E[X] = —0c0+ 0
® E[X]is finite if [*_|x|f(x)dx < oo

Mean value does not always make sense in your data analytics project!
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Elg(X)] # g(E[X])

® Recall that velocity = space/time, and then time = space/velocity!
® Vector v of speed (Km/h) to reach school and their probabilities p using feet, bike, bus,
train:
v = c(5, 10, 20, 30) p = c(0.1, 0.4, 0.25, 0.25)
Distance house-schools is 2 Km
What is the average time to reach school?

» 2/sum(v*p) i.e., space/E[velocity]
» sum(2/v*p) i.e., Efspace/velocity]

X = velocity, g(X) = 2/X time to reach school
> Elg(X)] # g(E[X])
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The change of variable formula (or rule of the lazy statistician)

Hence, fz(a) =
100 100

Elg(X ]—2ofo N =53 [X"], =193

Alternatively, E[g(X

X ~ U(0,10), width of a square field, E[X] =5

= X2 is the area of the field, E[g(X)] = ? [E[g(X)] # g(E[X])]
= P(X < v/a) = v3/10 for 0 < a < 100

=1/203 [later on, a general theorem]

10

]_ o X’1i5dx = 153 [x 3](1102100/3

THE CHANGE-OF-VARIABLE FORMULA. Let X be a random variable,
and let g : R — R be a function.
If X is discrete, taking the values ay,as, ..., then

Bl(X)] = Y g(a)P(X = ;).

i

If X is continuous, with probability density function f, then

E[g(X)] = /j‘ g(x) f(z)da.

See R script
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Change of units

Theorem (Change of units)

E[rX +s] =rE[X] +s

e Example: for Y = 1.8X + 32, we have E[Y] = 1.8E[X] + 32 [Celsius to Fahrenheit]

e Corollary.
oo E[X — E[X]] = E[X] - E[X]=0

® Theorem. Expectation minimizes the square error, i.e., for a € R:
E[(X — E[X])’] < E[(X — a)*]

> Proof. (sketch) set & [% (x — a)?f(x)dx =0
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Entropy of a random variable

® The Shannon’s information entropy is the average level of “information”, “surprise”, or
“uncertainty” inherent to the variable's possible outcomes

» Information is inversely proportional to probability
O Highly likely events carry very little new information
O Highly unlikely events carry more information

» Information content ic() of two independent events should sum up log
0 ic(p(AN B)) = ic(p(A)) + ic(p(B)) = ic(p(A)p(B))
o ic(p(Q)) = ic(1) = 0
0 ic(p(A)) > 0

p(ai)

® H(X) = E[—log p(X)] (discrete) H(X) = E[—log f(X)] (continuous)
Zp ) log p(a;) /OO f(x)log f(x)dx

» For X discrete, H(X) > 0 since — log p(X) = log/p(x) > 0
O reached when p(a1) =1 and p(a;) =0 for i # 1
> For X ~ Ber(p), H(X) = —plogp — (1 — p)log (1 — p)
See R script 1027


https://en.wikipedia.org/wiki/Entropy_(information_theory)

Computation with discrete random variables

For a discrete random variable X, the p.m.f. of Y = g(X) is:

= ) Px(X=x)= > Px(X=x)

g(x)=y xeg=(y)

® Proof. {Y =y} ={g(X) =y} ={xcg™'(v)}
e Corollary (the change-of-variable formula):

Elg(X)]=> yPy(Y =y) Zy > Px(X Zg )Px(X = x)

y g(x)=y
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X ~ U(1,200) number of tickets sold
Capacity is 150
Y = max{X — 150, 0} overbooked tickets

Py(y = y) = [ 190/200 ify =0 g 1(0) = {1,...,150}
VIEZYI= 1 17200 if1<y <50 g l(y)={y+ 150}

® Hence:
150
1200 ' 200

or using the change-of-variable formula:

200 200
1

1
ElY]=—- X -1 = — X—-1 = 6.
V1= 55 ;max{ 50,0} = oo ;151( 50) = 6.375
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Computation with continuous random variables

For a continuous random variable X, the density functions of Y = g(X)
when g() is increasing/decreasing are:

Frv) = Fx(e () Frly) = (e (») ]dg—

® Proof. (for g() increasing) Since g() is invertible and g(x) <y iff x < g~ (y):

Fy(y) = Py(g(X) <y)=Px(X < g7 (y)) = Fx(g(¥))
and then:

_ v ) _ di(e ) _ dFxle ) M) _p

=g &y e dy

Exercise: show the case g() decreasing!
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Change of units

CHANGE-OF-UNITS TRANSFORMATION. Let X be a continuous ran-
dom variable with distribution function Fy and probability density
function fx. If we change units to Y = rX + s for real numbers r > 0
and s, then

Fy(y) = Fx ('7/;'@) and  fy(y) = ,,l,fx (yis) .

A

+ =E — XL (distributed?
g o
2

For X ~ N(u,0?), how is Z =

fz(z) = ofx(oy + u) = \/%e*

Hence, Z ~ N(0,1)
In particular, for X ~ N(,u,az), we have:

e o
A X

P(X<a) =Pz <2 Hy—oH
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Example: A(u,o?)

Log-normal distribution Y = eX for X ~ N(u,0?), i.e., log(Y) ~ N(u,c?)

Y = g(X) = & Support is ]0, o[
g(x) = e* is increasing, and gil(y) =logy, and dg:ii;m = %
. log y — 1 BT 1 ey
F = F 1 = ¢ - f - f - € 2( ’ )
y(y) x(&7(v)) ( p ) v(y) =t (¥) dy yoy/2m

Elg(X)] = [~ g(x)fx(x)dx = [Z°_yfy(y)dy = el +’/2

Plausible and empirically adequate model for:

v vy VvYy

length of comments in posts, dwell time reading online articles, length of chess games, ...
size of living tissue, number of hospitalized cases in epidemics, blood pressure, . ..

income of 97%—-99% of the population, the number of citations, log of city size, ...

times to repair a maintainable system, size of audio-video files, amount of internet traffic per
unit time, ...

See R script
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Common distributions

® Probability distributions at Wikipedia
® Probability distributions in R

° @ C. Forbes, M. Evans,
N. Hastings, B. Peacock (2010)
Statistical Distributions, 4th Edition

Wiley

min X, Negative a=f=1 Beta-binomial
binomial (n,a,B)
(n, p)

-1 Hypergeometric
P= %8 (M, K)

a+f—

_—"p=MIN,n=K

Relationships among common distributions. Solid lines represent transformations and special
cases, dashed lines represent limits. Adapted from Leemis (1986). 16 /27


https://en.wikipedia.org/wiki/List_of_probability_distributions
https://CRAN.R-project.org/view=Distributions

e X ~ U(0,1) radius  fx(x)=1 Fx(x)=xfor x €[0,1]
oY =g(X)=m-X? Support is [0, 7]

® g(x) = mx? is increasing, and g~ }(y) = \/% and dg;i;(y) = ﬁ

fr(y) = fX(gl(y))dg;Iy(y) - 2\/1@

Fy(y) = Fx(g ' (y)) =

A<

Do not lift distributions from a data column
to a derived column in your data analytics project!
See R script

® Notice that: g(E[X]) = /a4 < E[g(X)] = fol g(x)fx(x)dx = f07r yiy(y)dy =5
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Jensen’s inequality

JENSEN’S INEQUALITY. Let g be a convex function, and let X be
a random variable. Then

9(B[X]) <E[g(X)].
e () is convex if f(txy + (1 — t)xp) < tf(x1) + (1 — t)f(x2) for t € [0,1]

f(x)

tf (x1) + (1= t)f (z2)

1ty + (1= t)zz)

tay + (1= t)ae

® if f”(x) > 0 then () is convex, e.g., g(x) = 7x? or g(x) = I/x for x >0
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Corollary and Example

Corollary (see [T, Ex. 8.11]. For a concave function g, namely g”(x) < 0: g(E[X]) > E[g(X)]
® log (x) is concave since log” (x) = —1/x*> <0
® Let X be discrete with finite domain of n elements

» By corollary above:
1 1
H(X) = E[log ——] < log E[——
(X) [gp(X)]_ g [p(X)]

» By change of variable:

1 . pla) p
00! ™ 2 e -

and then maximum entropy is:
H(X) <logn

» E.g., X ~ Ber(p), maximum entropy (uncertainty) for equiprobable events p = /2
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Variance

Investment A. P(X =450)=0.5 P(X =550)=05 E[X]=500
Investment B. P(X =0)=0.5 P(X =1000)=05 E[X] =500

Spread around the mean is important!

Variance and standard deviations

The variance Var(X) of a random variable X is the number:
Var(X) = E[(X — E[X])?]

ox = +/Var(X) is called the standard deviation of X.

The standard deviation has the same dimension as E[X] (and as X)
For X discrete, Var(X) = ",(a; — E[X])?p(a;)

Investment A. Var(X) = 50% and ox = 50

Investment B. Var(X) = 5002 and ox = 500
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® ForaeR:
E[IX —al] </ E[(X — a)?]

» Apply Jensen's ineq. for g(y) = y? convex on the rv. Y = |X — 34

® Median minimizes absolute deviation, i.e., for a € R:

E[IX — mx|] < E[|X —al]

» Prove it! (for continuous functions) Hint: < |x| = x/|x|

® Maximum distance between expectation and median:

|EIX] = mx| < E[|X — mx|] < E[|X — E[X][]] < \/E[(X — E[X])?] = ox

» Apply Jensen's ineq. for g(y) = |y| convex on the r.v. Y = X — mx plus two results above
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® For discrete r.v. X with p.m..f. p(): the values a such that p(a) is maximum, i.e.:

arg max p(a)
a

» Can be more than one, e.g., in Ber(0.5)
® For continuous r.v. X with d.f. f(): the values x such that f(x) is a local maximum, e.g.:

f'ix)=0 and f"(x)<0

» Notice: local maximum! mode

® Unimodal distribution = that have only one mode .!

median

rp

mean
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Variance

Theorem. Var(X) = E[X?] — E[X]?

Proof.
Var(X) = E[(X = EIX])(X = E[X])]

= E[X?+ E[X]* —2XE[X]]

= E[X?] + E[X]? — E[2XE[X]]

= E[X?] + E[X]? - 2E[X]E[X] = E[X?] — E[X]?

® E[X?]is called the second moment of X J75 X3 f(x)dx
Corollary.
Var(rX 4 s) = r*Var(X)

Prove it!

® Variance insensitive to shift s!
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Variance may be infinite or may not exist!

Standard deviation ox is a measure of the margin of error around a predicted value (e.g., temperature
“20 +£1.5").
An infinite or non-existent margin of error is no prediction at all.

® \ariance may not exists!

» If expectation does not exist!
» Also in cases when expectation exists
O We'll see later Power laws.

® Variance can be infinite

» Distributions have fat upper tails that decrease at an extremely slow rate.
» The slow decay of probability increases the odds of very extreme values (outliers)
» E.g., eX for X ~ Cau(0,1) 0 [log-Cauchy distribution]

T T T
Lco. 1y ——
LC(1, 1) —
LC(0,2) ——
0.6 LC(0, .5) 7
LC(l, 5)
" & j\ —
02 f >N E
0 1 1|\ 24 /27




Variance

® Variance of some discrete distributions

>

vy

v

v

v

X~ U(m M) E[X] =M ypr(x) = WMomily—1

O use Var(X) = Var(X — m), call n=M —m+1and 377 2 = (c=n2n=l)

X ~Ber(p) E[X]=p Var(X)=p*(1-p)+(1-p)’p=p(l-p)
X ~ Bin(n,p) E[X]=n-p Var(X)=np(l-p
O Because ...we'll see later
X~ Geo(p) E[X]=1 Var(X)=21£
O Hint: use Var(X) = E[X?] — E[X]? and 32, k* - x* 1 = s
X ~ NBin(n,p) E[X]={£& Var(X) = ntL

—p i
O Because ...we'll see later

X~ Poi(p) EX]=p Var(X)=pu
O Because, when n — oo: Bin(n, #/n) — Poi(f)

See seeing-theory.brown.edu
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https://seeing-theory.brown.edu/basic-probability/index.html

Variance

® Variance of some continuous distributions

» X~ U(e, B)  E[X]=(a+p8)/2 Var(X)=(8—-a)*/12
O Prove it! Recall that f(x) =1/(8-a)

» X~ Exp(A) E[X]=1Yx Var(X)=1Yx
O Prove it! Recall that f(x) = Ae™™

» X~ N(u,0?) E[X]=p Var(X)=o0?
O Prove it! Hint: use z = *>* and integration by parts.

» X ~ Erl(n,\) E[X]=n/x Var(X)=n/»?

O Because ...we'll see later
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E[] and Var() of random variables with bounded support

Assume a < X < b, or more generally P(a < X < b)=1 [almost surely or a.s.]
It turns out that expectation and variance are finite!
e a<E[X]<b
> E.g., for X continuous, E[X] = [?xf(x)dx < [ bf(x)dx = b
® 0 < Var(X) < (b=2)*/s

Proof.
» For v € R, consider E[(X —7)?] =~2 — 2vE[X] + E[X?]
> It is mimimum for v = E[X] (con5|der ('y —2va+ b))

» Thus, E[(X — E[X])?] = Var(X) < E[(X —~)?]
» Since (X —7)2 < (b—7)?, for v = (+b)/2 we have:

(a+b) (b— a)?

@Dy < (p- 22D (b

Var(X) < E[(X —

® Exercise at home: show that the bound (b—2)*/4 can be reached.
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https://en.wikipedia.org/wiki/Almost_surely

