Master Program in Data Science and Business Informatics Statistics for Data Science

Lesson 12 - Simulation

Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy salvatore.ruggieri@unipi.it

Simulation

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called realizations
- Basic issue: how to generate realizations?
- The Galton Board

Simulation

- Not all problems can be solved with calculus!
- Complex interactions among random variables can be simulated
- Generated random values are called realizations
- Basic issue: how to generate realizations?
- in R: rnorm(5), $\operatorname{rexp}(2)$, rbinom (...), \ldots
- Ok, but how do they work?
- Assumption: we are only given runif()!
- Problem: derive all the other random generators

Simulation: discrete distributions

Bernoulli random variables
Suppose U has a $U(0,1)$ distribution. To construct a $\operatorname{Ber}(p)$ random variable for some $0<p<1$, we define

$$
X= \begin{cases}1 & \text { if } U<p \\ 0 & \text { if } U \geq p\end{cases}
$$

so that

$$
\begin{aligned}
& \mathrm{P}(X=1)=\mathrm{P}(U<p)=p \\
& \mathrm{P}(X=0)=\mathrm{P}(U \geq p)=1-p
\end{aligned}
$$

This random variable X has a Bernoulli distribution with parameter p.

- For $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ i.i.d., we have: $\sum_{i=1}^{n} X_{i} \sim \operatorname{Binom}(n, p)$

See R script

Simulation: continuous distributions

- $F: \mathbb{R} \rightarrow[0,1]$ and $F^{-1}:[0,1] \rightarrow \mathbb{R}$
- E.g., F strictly increasing
- N.B., the textbook notation for F^{-1} is $F^{i n v}$
- For $X \sim U(0,1)$ and $0 \leq b \leq 1$

$$
P(X \leq b)=b
$$

- then, for $b=F(x)$

$$
P(X \leq F(x))=F(x)
$$

- and then by inverting

$$
P\left(F^{-1}(x) \leq x\right)=F(x)
$$

- In summary:

$$
F^{-1}(X) \sim F \text { for } X \sim U(0,1)
$$

See R script

$$
\begin{aligned}
& f: X \rightarrow Y \\
& y=f(x)
\end{aligned}
$$

Common distributions

Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986).

Optional reference

William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery (2007) Numerical Recipes - The Art of Scientific Computing Chapter 7: Random Numbers online book

