Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 14 - Law of large numbers, and the central limit theorem

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

Markov's inequality

• Question: how much probability mass is near the expectation?

Markov's inequality. For X non-negative (i.e., P(X < 0) = 0) and $\alpha > 0$:

$$P(X \ge \alpha) \le \frac{E[X]}{\alpha}$$

Proof. Take expectations of $\alpha \mathbb{1}_{X \geq \alpha} \leq X$.

 For a non-negative r.v., the probability of a large value is inversely proportional to the value

Corollary. Assume $X \ge 0$, E[X] > 0 and k > 0. We have: $P(X \ge kE[X]) \le \frac{1}{k}$

Chebyshev's inequality

Question: how much probability mass is near the expectation?

Chebyshev's inequality. For an arbitrary random variable Y and any a>0:

$$P(|Y - E[Y]| \ge a) \le \frac{1}{a^2} Var(Y)$$
.

Proof. Let $X = (Y - E[Y])^2$ and $\alpha = a^2$. By Markov's inequality:

$$P(|Y - E[Y]| \ge a) = P((Y - E[Y])^2 \ge a^2) \le \frac{E[(Y - E[Y])^2]}{a^2} = \frac{1}{a^2} Var(Y)$$

3/16

Chebyshev's inequality

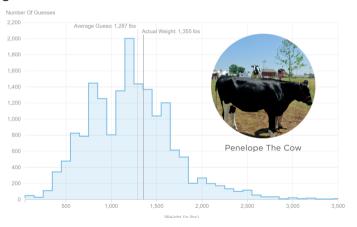
- " $\mu \pm a$ few σ " rule: Most of the probability mass of a random variable is within a few standard deviations from its expectation!
- Let $\mu = E[Y]$ and $\sigma^2 = Var(Y) > 0$. For k > 0 (and hence $a = k\sigma > 0$):

$$P(|Y - \mu| < k\sigma) = 1 - P(|Y - \mu| \ge k\sigma) \ge 1 - \frac{1}{k^2 \sigma^2} Var(Y) = 1 - \frac{1}{k^2}$$

- For k = 2, 3, 4, the RHS is 3/4, 8/9, 15/16
- Chebyshev's inequality is sharp when nothing is known about X, but in general it is a large bound!

Averages vary less

Guessing the weight of a cow



• See Francis Galton (inventor of standard deviation, regression, and much more)

Expectation and variance of an average

• Let X_1, X_2, \ldots, X_n be independent r. v. for which $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$

$$\bar{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

EXPECTATION AND VARIANCE OF AN AVERAGE. If \bar{X}_n is the average of n independent random variables with the same expectation μ and variance σ^2 , then

$$\mathrm{E}\left[\bar{X}_n\right] = \mu \quad \text{and} \quad \mathrm{Var}(\bar{X}_n) = \frac{\sigma^2}{n}.$$

• Notice that X_1, \ldots, X_n are not required to be identically distributed!

The (weak) law of large numbers

• Apply Chebyshev's inequality to \bar{X}_n

$$P(|\bar{X}_n - \mu| > \epsilon) \le \frac{1}{\epsilon^2} Var(\bar{X}_n) = \frac{\sigma^2}{n\epsilon^2}$$

• For $n \to \infty$, $\sigma^2/(n\epsilon^2) \to 0$

THE LAW OF LARGE NUMBERS. If \bar{X}_n is the average of n independent random variables with expectation μ and variance σ^2 , then for any $\varepsilon > 0$:

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| > \varepsilon) = 0.$$

- probability that \bar{X}_n is far from μ tends to 0 as $n \to \infty$! [Convergence in probability]
- It holds also if σ^2 is infinite (proof not included)
- Notice (again!) that X_1, \ldots, X_n are not required to be identically distributed!

Recovering probability of an event

Objective: Let C = (a, b], and want to know $p = P(X \in C)$

- Run *n* independent measurements
- Model the results as X_1, \ldots, X_n random variables
- Define the indicator variables, for i = 1, ..., n:

$$Y_i = \mathbb{1}_{X_i \in C} = \left\{ \begin{array}{ll} 1 & \text{if } X_i \in C \\ 0 & \text{if } X_i \notin C \end{array} \right.$$

Y_i's are independent

[Propagation of independence]

- $E[Y_i] = 1 \cdot P(X_i \in C) + 0 \cdot P(X_i \notin C) = p$
- Defined $\bar{Y}_n = \frac{Y_1 + ... + Y_n}{n}$, by the law of large numbers:

$$\lim_{n\to\infty} P(|\bar{Y}_n - p| > \epsilon) = 0$$

• Frequency counting of $v \in (a, b]$ (e.g., in histograms) is a probability estimation method!

Estimating conditional probability

Objective: estimate
$$p = P(C = c | A = a) = P(A = a, C = c)/P(A = a)$$

- Run *n* independent measurement
- Model the results as $(A_1, C_1), \ldots, (A_n, C_n)$
- Using the approach of previous slide (but with the strong LLN):
 - for $Y_i = \mathbbm{1}_{A_i=a,C_i=c}$: $P(\lim_{n\to\infty} \bar{Y}_n = p_{ac}) = 1$ where $p_{ac} = P(A=a,C=c)$
 - for $Z_i = \mathbb{1}_{A_i = a}$: $P(\lim_{n \to \infty} \bar{Z}_n = p_a) = 1$ where $p_a = P(A = a)$
- if $\bar{Z}_n \neq 0$, from previous two statements: (limit of a ratio is the ratio of the limits)

$$P(\lim_{n \to \infty} \frac{\bar{Y}_n}{\bar{Z}_n} = \frac{p_{ac}}{p_c}) = 1$$

- Sample usage: almost everywhere in Machine Learning
- Issues when n is small
 - ► e.g., in target encoding of rare categorical values [Micci-Barreca, 2001]

Hoeffding bound

Theorem (Hoeffding bound)

If \bar{X}_n is the average of n independent r.v. with expectation μ and $P(a \le X_i \le b) = 1$, then for any $\epsilon > 0$

$$P(|\bar{X}_n - \mu| \ge \epsilon) \le 2e^{-2n\epsilon^2/(b-a)^2}$$

- For bounded support, a tight upper bound!
- When a = 0, b = 1 (e.g., Bernoulli trials):

$$P(|\bar{X}_n - \mu| \ge \epsilon) \le 2e^{-2n\epsilon^2}$$

Corollary. If \bar{X}_n is the average of n independent r.v. with expectation μ and $P(a \le X_i \le b) = 1$, then for any $n \ge 1/2\epsilon^2 \log 2/\delta$: $P(|\bar{X}_n - \mu| \le \epsilon) \ge 1 - \delta$

- ϵ accuracy: allowed error in estimation
- δ confidence: allowed probability of failure in achieving the accuracy
- E.g., recovering probability of an event: $P(|\bar{Y}_n p| \le 0.01) \ge 0.99$ required $n \ge 3516$

The central limit theorem

• Let X_1, X_2, \ldots, X_n be independent r. v. for which $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$

$$ar{X}_n = rac{X_1 + X_2 + \ldots + X_n}{n}$$
 $E[ar{X}_n] = \mu$ $Var(ar{X}_n) = rac{\sigma^2}{n}$

- Can we derive the distribution of \bar{X}_n ?
- We already showed that, for $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ independent:

$$\frac{X_1+X_2}{2}\sim N(\frac{\mu_1+\mu_2}{2},\frac{\sigma_1^2+\sigma_2^2}{2^2})$$

• Assume $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$:

$$ar{X}_n \sim \mathcal{N}(\mu, rac{\sigma^2}{n}) \qquad Z_n = rac{ar{X}_n - \mu}{\sigma/\sqrt{n}} = rac{ar{X}_n - E[ar{X}_n]}{\sqrt{rac{Var(ar{X}_n)}{n}}} \sim \mathcal{N}(0, 1)$$

• Interestingly, the same conclusion extends to any distribution for the X_i 's!

The central limit theorem

The Central limit theorem. Let X_1, X_2, \ldots be any sequence of independent identically distributed random variables with finite positive variance. Let μ be the expected value and σ^2 the variance of each of the X_i . For $n \geq 1$, let Z_n be defined by

$$Z_n = \sqrt{n} \, \frac{\bar{X}_n - \mu}{\sigma};$$

then for any number a

$$\lim_{n \to \infty} F_{Z_n}(a) = \Phi(a),$$

where Φ is the distribution function of the N(0,1) distribution. In words: the distribution function of Z_n converges to the distribution function Φ of the standard normal distribution.

It extends to not identically distributed r.v.'s

[Lindeberg's condition]

- Why is it so frequent to observe a normal distribution?
 - ► Sometime it is the average/sum effects of other variables, e.g., as in "noise"
 - ► This justifies the common use of it to stand in for the effects of unobserved variables

See R script and seeing-theory.brown.edu

Applications: approximating probabilities

• Let $X_1, ..., X_n \sim Exp(2)$, for n = 100

$$\mu = \sigma = 1/2$$

- Assume to observe realizations x_1, \ldots, x_n such that $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i = 0.6$
- What is the probability $P(\bar{X}_n \ge 0.6)$ of observing such a value or a greater value?

Option A: Compute the distribution of \bar{X}_n

- $S_n = X_1 + \ldots + X_n \sim Erl(n, 2)$
- $\bar{X}_n = S_n/n$ hence by change-of-units transformation

$$F_{ar{X}_n}(x) = F_{S_n}(n \cdot x)$$
 and $f_{ar{X}_n}(x) = n \cdot f_{S_n}(n \cdot x)$

and then:

$$P(\bar{X}_n \geq 0.6) = 1 - F_{\bar{X}_n}(0.6) = 1 - F_{S_n}(n \cdot 0.6) = 1 - \text{pgamma}(60, n, 2) = 0.0279$$

Applications: approximating probabilities

• Let $X_1, ..., X_n \sim Exp(2)$, for n = 100

$$\mu = \sigma = 1/2$$

- Assume to observe realizations x_1, \ldots, x_n such that $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i = 0.6$
- What is the probability $P(\bar{X}_n \geq 0.6)$ of observing such a value or a greater value?

Option B: Approximate them by using the CLT (requires μ and σ)

• Since $Z_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$ for $n \to \infty$:

$$P(\bar{X}_n \ge 0.6) = P(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \ge \frac{0.6 - \mu}{\sigma/\sqrt{n}}) = P(Z_n \ge \frac{0.6 - \mu}{\sigma/\sqrt{n}}) \approx 1 - \Phi(\frac{0.6 - 0.5}{0.5/10}) = 0.0228$$

• also, notice $X_1 + \ldots + X_n = \sqrt{n}\sigma Z_n + n\mu \sim N(n\mu, n\sigma^2)$

How large should n be?

- How fast is the convergence of Z_n to N(0,1)?
- The approximation might be poor when:
 - n is small
 - \triangleright X_i is asymmetric, bimodal, or discrete
 - the value to test (0.6 in our example) is far from μ

the myth of $n \ge 30$

Optional reference

Target encoding of categorical features.

Daniele Micci-Barreca (2001)

A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction Problems

SIGKDD Explor. Newsl. 3 (1), 27 - 32.