Master Program in Data Science and Business Informatics Statistics for Data Science

Lesson 18 - Unbiased estimators. Efficiency and MSE

Salvatore Ruggieri
Department of Computer Science
University of Pisa, Italy
salvatore.ruggieri@unipi.it

Statistical model for repeated measurement

- A dataset x_{1}, \ldots, x_{n} consists of repeated measurements of a phenomenon we are interested in understanding
- E.g., measurement of the speed of light
- We model a dataset as the realization of a random sample

Random sample

A random sample is a collection of i.i.d. random variables $X_{1}, \ldots, X_{n} \sim F(\alpha)$, where $F()$ is the distribution and α its parameter(s).

Statistical model for repeated measurement

- A dataset x_{1}, \ldots, x_{n} consists of repeated measurements of a phenomenon we are interested in understanding
- E.g., measurement of the speed of light
- We model a dataset as the realization of a random sample

Random sample

A random sample is a collection of i.i.d. random variables $X_{1}, \ldots, X_{n} \sim F(\alpha)$, where $F()$ is the distribution and α its parameter(s).

- Challenging questions/inferences on a population given a sample:
- How to determine $E[X], \operatorname{Var}(X)$, or other functions of X ?
- How to determine α, assuming to know the form of F ?
- How to determine both F and α ?

An example

Table 17.1. Michelson data on the speed of light.

850	740	900	1070	930	850	950	980	980	880
1000	980	930	650	760	810	1000	1000	960	960
960	940	960	940	880	800	850	880	900	840
830	790	810	880	880	830	800	790	760	800
880	880	880	860	720	720	620	860	970	950
880	910	850	870	840	840	850	840	840	840
890	810	810	820	800	770	760	740	750	760
910	920	890	860	880	720	840	850	850	780
890	840	780	810	760	810	790	810	820	850
870	870	810	740	810	940	950	800	810	870

- What is an estimate of the true speed of light (estimand)?

$$
x_{1}=850, \text { or } \min x_{i}, \text { or } \max x_{i}, \text { or } \bar{x}_{n}=852.4 ?
$$

An example

- Speed of light dataset as realization of

$$
X_{i}=c+\epsilon_{i}
$$

where ϵ_{i} is measurement error with $E\left[\epsilon_{i}\right]=0$ and $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$

An example

- Speed of light dataset as realization of

$$
X_{i}=c+\epsilon_{i}
$$

where ϵ_{i} is measurement error with $E\left[\epsilon_{i}\right]=0$ and $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$

- We are then interested in $E\left[X_{i}\right]=c$
- How to estimate?

An example

- Speed of light dataset as realization of

$$
X_{i}=c+\epsilon_{i}
$$

where ϵ_{i} is measurement error with $E\left[\epsilon_{i}\right]=0$ and $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$

- We are then interested in $E\left[X_{i}\right]=c$
- How to estimate?
- Use some info. For $X=X_{1}$:

$$
E[X]=E\left[X_{1}\right]=c \quad \operatorname{Var}(X)=\operatorname{Var}\left(X_{1}\right)=\sigma^{2}
$$

An example

- Speed of light dataset as realization of

$$
X_{i}=c+\epsilon_{i}
$$

where ϵ_{i} is measurement error with $E\left[\epsilon_{i}\right]=0$ and $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$

- We are then interested in $E\left[X_{i}\right]=c$
- How to estimate?
- Use some info. For $X=X_{1}$:

$$
E[X]=E\left[X_{1}\right]=c \quad \operatorname{Var}(X)=\operatorname{Var}\left(X_{1}\right)=\sigma^{2}
$$

- Use all info. For $\bar{X}_{n}=\left(X_{1}+\ldots+X_{n}\right) / n$:

$$
E\left[\bar{X}_{n}\right]=c \quad \operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\operatorname{Var}\left(X_{1}\right)}{n}=\frac{\sigma^{2}}{n}
$$

Hence, for $n \rightarrow \infty, \operatorname{Var}\left(\bar{X}_{n}\right) \rightarrow 0$

Estimate

Estimand and estimate

An estimand θ is an unknown parameter of a distribution $F()$.
An estimate t of θ is a value that obtained as a function $h()$ over a dataset x_{1}, \ldots, x_{n} :

$$
t=h\left(x_{1}, \ldots, x_{n}\right)
$$

- $t=\bar{x}_{n}=852.4$ is an estimate of the speed of light (estimand) $t=x_{1}=850$ is another estimate

Estimate

Estimand and estimate

An estimand θ is an unknown parameter of a distribution $F()$.
An estimate t of θ is a value that obtained as a function $h()$ over a dataset x_{1}, \ldots, x_{n} :

$$
t=h\left(x_{1}, \ldots, x_{n}\right)
$$

- $t=\bar{x}_{n}=852.4$ is an estimate of the speed of light (estimand) $t=x_{1}=850$ is another estimate
- Since x_{1}, \ldots, x_{n} are modelled as realizations of X_{1}, \ldots, X_{n}, estimates are realizations of the corresponding sample statistics $h\left(X_{1}, \ldots, X_{n}\right)$

Statistics and estimator

A statistics is a function of $h\left(X_{1}, \ldots, X_{n}\right)$ of r.v.'s.
An estimator of a parameter θ is a statistics $T_{n}=h\left(X_{1}, \ldots, X_{n}\right)$ intended to provide information about θ.

Estimate

Estimand and estimate

An estimand θ is an unknown parameter of a distribution $F()$.
An estimate t of θ is a value that obtained as a function $h()$ over a dataset x_{1}, \ldots, x_{n} :

$$
t=h\left(x_{1}, \ldots, x_{n}\right)
$$

- $t=\bar{x}_{n}=852.4$ is an estimate of the speed of light (estimand) $t=x_{1}=850$ is another estimate
- Since x_{1}, \ldots, x_{n} are modelled as realizations of X_{1}, \ldots, X_{n}, estimates are realizations of the corresponding sample statistics $h\left(X_{1}, \ldots, X_{n}\right)$

Statistics and estimator

A statistics is a function of $h\left(X_{1}, \ldots, X_{n}\right)$ of r.v.'s.
An estimator of a parameter θ is a statistics $T_{n}=h\left(X_{1}, \ldots, X_{n}\right)$ intended to provide information about θ.

- An estimate $t=h\left(x_{1}, \ldots, x_{n}\right)$ is a realization of the estimator $T_{n}=h\left(X_{1}, \ldots, X_{n}\right)$
- $T_{n}=\bar{X}_{n}=\left(X_{1}+\ldots, X_{n}\right) / n$ is an estimator of $\mu \quad T_{n}=X_{1}$ is another estimator

Unbiased estimator

- The probability distribution of an estimator T is called the sampling distribution of T

Unbiased estimator

- The probability distribution of an estimator T is called the sampling distribution of T

Unbiased estimator

An estimator $T_{n}=h\left(X_{1}, \ldots, X_{n}\right)$ of a parameter θ (estimand) is unbiased if:

$$
E\left[T_{n}\right]=\theta
$$

If the difference $E\left[T_{n}\right]-\theta$, called the bias of T_{n}, is non-zero, T_{n} is called a biased estimator.

- Sometimes, T_{n} written as $\hat{\theta}$, e.g., $\hat{\mu}$ estimator of μ

Unbiased estimator

- The probability distribution of an estimator T is called the sampling distribution of T

Unbiased estimator

An estimator $T_{n}=h\left(X_{1}, \ldots, X_{n}\right)$ of a parameter θ (estimand) is unbiased if:

$$
E\left[T_{n}\right]=\theta
$$

If the difference $E\left[T_{n}\right]-\theta$, called the bias of T_{n}, is non-zero, T_{n} is called a biased estimator.

- $E\left[T_{n}\right]>\theta$ is a positive bias, $E\left[T_{n}\right]<\theta$ is a negative bias
- Sometimes, T_{n} written as $\hat{\theta}$, e.g., $\hat{\mu}$ estimator of μ

Unbiased estimator

- The probability distribution of an estimator T is called the sampling distribution of T

Unbiased estimator

An estimator $T_{n}=h\left(X_{1}, \ldots, X_{n}\right)$ of a parameter θ (estimand) is unbiased if:

$$
E\left[T_{n}\right]=\theta
$$

If the difference $E\left[T_{n}\right]-\theta$, called the bias of T_{n}, is non-zero, T_{n} is called a biased estimator.

- $E\left[T_{n}\right]>\theta$ is a positive bias, $E\left[T_{n}\right]<\theta$ is a negative bias
- Asymptotically unbiased: $\lim _{n \rightarrow \infty} E\left[T_{n}\right]=\theta$
- Sometimes, T_{n} written as $\hat{\theta}$, e.g., $\hat{\mu}$ estimator of μ

On $E[T]$

- Random sample i.i.d. $X_{1}, \ldots, X_{n} \sim F(\alpha)$
- $E[T]=E\left[h\left(X_{1}, \ldots, X_{n}\right)\right]$ over the joint distribution $\prod_{i=1}^{n} F(\alpha)$
- E.g., for $F()$ continuous with d.f. $f()$

$$
E[T]=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} h\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}\right) \ldots f\left(x_{n}\right) d x_{1}, \ldots, d x_{n}
$$

When is an estimator better than another one?

- The standard deviation of the sampling distribution is called the standard error (SE)

Efficiency of unbiased estimators

Let T_{1} and T_{2} be unbiased estimators of the same parameter θ. The estimator T_{2} is more efficient than T_{1} if:

$$
\operatorname{Var}\left(T_{2}\right)<\operatorname{Var}\left(T_{1}\right)
$$

When is an estimator better than another one?

- The standard deviation of the sampling distribution is called the standard error (SE)

Efficiency of unbiased estimators

Let T_{1} and T_{2} be unbiased estimators of the same parameter θ. The estimator T_{2} is more efficient than T_{1} if:

$$
\operatorname{Var}\left(T_{2}\right)<\operatorname{Var}\left(T_{1}\right)
$$

- The relative efficiency of T_{2} w.r.t. T_{1} is $\operatorname{Var}\left(T_{1}\right) / \operatorname{Var}\left(T_{2}\right)$

When is an estimator better than another one?

- The standard deviation of the sampling distribution is called the standard error (SE)

Efficiency of unbiased estimators

Let T_{1} and T_{2} be unbiased estimators of the same parameter θ. The estimator T_{2} is more efficient than T_{1} if:

$$
\operatorname{Var}\left(T_{2}\right)<\operatorname{Var}\left(T_{1}\right)
$$

- The relative efficiency of T_{2} w.r.t. T_{1} is $\operatorname{Var}\left(T_{1}\right) / \operatorname{Var}\left(T_{2}\right)$
- Speed of light example:
- $E\left[X_{1}\right]=E\left[X_{2}\right]=\ldots=E\left[\bar{X}_{n}\right]=c$, i.e., all unbiased estimators

The mean is more efficient than a single value

$$
\operatorname{Var}\left(\bar{X}_{n}\right)=\sigma^{2} / n<\sigma^{2}=\operatorname{Var}\left(X_{1}\right) \quad \frac{\operatorname{Var}\left(X_{1}\right)}{\operatorname{Var}\left(\bar{X}_{n}\right)}=n
$$

Unbiased estimators for expectation and variance

```
UnBIASED ESTIMATORS FOR EXPECTATION AND vaRIANCE. Sup-
pose }\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\ldots,\mp@subsup{X}{n}{}\mathrm{ is a random sample from a distribution with
finite expectation }\mu\mathrm{ and finite variance }\mp@subsup{\sigma}{}{2}\mathrm{ . Then
\[
\bar{X}_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
\]
\[
\text { is an unbiased estimator for } \mu \text { and }
\]
\[
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
\]
is an unbiased estimator for \(\sigma^{2}\).
```

- Estimates: sample mean \bar{x}_{n} and sample variance s_{n}^{2}
- $E\left[\bar{X}_{n}\right]=\left(E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]\right) / n=\mu$ and, by CLT, $\operatorname{Var}\left(\bar{X}_{n}\right) \rightarrow 0$ for $n \rightarrow \infty$

Unbiased estimators for expectation and variance

```
UNBIASED ESTIMATORS FOR EXPECTATION AND vARIANCE. Sup-
pose }\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\ldots,\mp@subsup{X}{n}{}\mathrm{ is a random sample from a distribution with
finite expectation }\mu\mathrm{ and finite variance }\mp@subsup{\sigma}{}{2}\mathrm{ . Then
\[
\bar{X}_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
\]
is an unbiased estimator for \(\mu\) and
\[
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
\]
is an unbiased estimator for \(\sigma^{2}\).
```

- Estimates: sample mean \bar{X}_{n} and sample variance s_{n}^{2}
- $E\left[\bar{X}_{n}\right]=\left(E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]\right) / n=\mu$ and, by CLT, $\operatorname{Var}\left(\bar{X}_{n}\right) \rightarrow 0$ for $n \rightarrow \infty$
- Why division by $n-1$ in S_{n}^{2} ?

$E\left[S_{n}^{2}\right]=\sigma^{2}$

(1) $E\left[X_{i}-\bar{X}_{n}\right]=E\left[X_{i}\right]-E\left[\bar{X}_{n}\right]=\mu-\mu=0$
(2) $\operatorname{Var}\left(X_{i}-\bar{X}_{n}\right)=E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]-E\left[X_{i}-\bar{X}_{n}\right]^{2}=E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]$

$E\left[S_{n}^{2}\right]=\sigma^{2}$

(1) $E\left[X_{i}-\bar{X}_{n}\right]=E\left[X_{i}\right]-E\left[\bar{X}_{n}\right]=\mu-\mu=0$
(2) $\operatorname{Var}\left(X_{i}-\bar{X}_{n}\right)=E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]-E\left[X_{i}-\bar{X}_{n}\right]^{2}=E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]$
[by (1)]
(3) $X_{i}-\bar{X}_{n}=X_{i}-\frac{1}{n} \sum_{j=1}^{n} X_{j}=X_{i}-\frac{1}{n} X_{i}-\frac{1}{n} \sum_{j=1, j \neq i}^{n} X_{j}=\frac{n-1}{n} X_{i}-\frac{1}{n} \sum_{j=1, j \neq i}^{n} X_{j}$

$E\left[S_{n}^{2}\right]=\sigma^{2}$

(1) $E\left[X_{i}-\bar{X}_{n}\right]=E\left[X_{i}\right]-E\left[\bar{X}_{n}\right]=\mu-\mu=0$
(2) $\operatorname{Var}\left(X_{i}-\bar{X}_{n}\right)=E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]-E\left[X_{i}-\bar{X}_{n}\right]^{2}=E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]$
[by (1)]
(3) $X_{i}-\bar{X}_{n}=X_{i}-\frac{1}{n} \sum_{j=1}^{n} X_{j}=X_{i}-\frac{1}{n} X_{i}-\frac{1}{n} \sum_{j=1, j \neq i}^{n} X_{j}=\frac{n-1}{n} X_{i}-\frac{1}{n} \sum_{j=1, j \neq i}^{n} X_{j}$
(4) From (3):

$$
\operatorname{Var}\left(X_{i}-\bar{X}_{n}\right)=\frac{(n-1)^{2}}{n^{2}} \sigma^{2}+\frac{1}{n^{2}}(n-1) \sigma^{2}=\frac{n-1}{n} \sigma^{2}
$$

$E\left[S_{n}^{2}\right]=\sigma^{2}$

(1) $E\left[X_{i}-\bar{X}_{n}\right]=E\left[X_{i}\right]-E\left[\bar{X}_{n}\right]=\mu-\mu=0$
(2) $\operatorname{Var}\left(X_{i}-\bar{X}_{n}\right)=E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]-E\left[X_{i}-\bar{X}_{n}\right]^{2}=E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]$
[by (1)]
(3) $X_{i}-\bar{X}_{n}=X_{i}-\frac{1}{n} \sum_{j=1}^{n} X_{j}=X_{i}-\frac{1}{n} X_{i}-\frac{1}{n} \sum_{j=1, j \neq i}^{n} X_{j}=\frac{n-1}{n} X_{i}-\frac{1}{n} \sum_{j=1, j \neq i}^{n} X_{j}$
(4) From (3):

$$
\operatorname{Var}\left(X_{i}-\bar{X}_{n}\right)=\frac{(n-1)^{2}}{n^{2}} \sigma^{2}+\frac{1}{n^{2}}(n-1) \sigma^{2}=\frac{n-1}{n} \sigma^{2}
$$

- Therefore:

$$
E\left[S_{n}^{2}\right]=\frac{1}{n-1} \sum_{i=1}^{n} E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]=\frac{1}{n-1} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}-\bar{X}_{n}\right)=\frac{1}{n-1} n \frac{n-1}{n} \sigma^{2}=\sigma^{2}
$$

$E\left[S_{n}^{2}\right]=\sigma^{2}$

(1) $E\left[X_{i}-\bar{X}_{n}\right]=E\left[X_{i}\right]-E\left[\bar{X}_{n}\right]=\mu-\mu=0$
(2) $\operatorname{Var}\left(X_{i}-\bar{X}_{n}\right)=E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]-E\left[X_{i}-\bar{X}_{n}\right]^{2}=E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]$
[by (1)]
(3) $X_{i}-\bar{X}_{n}=X_{i}-\frac{1}{n} \sum_{j=1}^{n} X_{j}=X_{i}-\frac{1}{n} X_{i}-\frac{1}{n} \sum_{j=1, j \neq i}^{n} X_{j}=\frac{n-1}{n} X_{i}-\frac{1}{n} \sum_{j=1, j \neq i}^{n} X_{j}$
(4) From (3):

$$
\operatorname{Var}\left(X_{i}-\bar{X}_{n}\right)=\frac{(n-1)^{2}}{n^{2}} \sigma^{2}+\frac{1}{n^{2}}(n-1) \sigma^{2}=\frac{n-1}{n} \sigma^{2}
$$

- Therefore:

$$
E\left[S_{n}^{2}\right]=\frac{1}{n-1} \sum_{i=1}^{n} E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]=\frac{1}{n-1} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}-\bar{X}_{n}\right)=\frac{1}{n-1} n \frac{n-1}{n} \sigma^{2}=\sigma^{2}
$$

$E\left[S_{n}^{2}\right]=\sigma^{2}$

(1) $E\left[X_{i}-\bar{X}_{n}\right]=E\left[X_{i}\right]-E\left[\bar{X}_{n}\right]=\mu-\mu=0$
(2) $\operatorname{Var}\left(X_{i}-\bar{X}_{n}\right)=E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]-E\left[X_{i}-\bar{X}_{n}\right]^{2}=E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]$
[by (1)]
(3) $X_{i}-\bar{X}_{n}=X_{i}-\frac{1}{n} \sum_{j=1}^{n} X_{j}=X_{i}-\frac{1}{n} X_{i}-\frac{1}{n} \sum_{j=1, j \neq i}^{n} X_{j}=\frac{n-1}{n} X_{i}-\frac{1}{n} \sum_{j=1, j \neq i}^{n} X_{j}$
(4) From (3):

$$
\operatorname{Var}\left(X_{i}-\bar{X}_{n}\right)=\frac{(n-1)^{2}}{n^{2}} \sigma^{2}+\frac{1}{n^{2}}(n-1) \sigma^{2}=\frac{n-1}{n} \sigma^{2}
$$

- Therefore:

$$
E\left[S_{n}^{2}\right]=\frac{1}{n-1} \sum_{i=1}^{n} E\left[\left(X_{i}-\bar{X}_{n}\right)^{2}\right]=\frac{1}{n-1} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}-\bar{X}_{n}\right)=\frac{1}{n-1} n \frac{n-1}{n} \sigma^{2}=\sigma^{2}
$$

- In general, $\operatorname{Var}\left(S_{n}^{2}\right)=\frac{1}{n}\left(\mu_{4}-\frac{n-3}{n-1} \sigma^{4}\right) \rightarrow 0$ for $n \rightarrow \infty$

Degree of freedom

- For the estimator $V_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$:

$$
E\left[V_{n}^{2}\right]=E\left[\frac{n-1}{n} S_{n}^{2}\right]=\frac{n-1}{n} \sigma^{2}
$$

- Hence, $E\left[V_{n}^{2}\right]-\sigma^{2}=-\sigma^{2} / n$
[Negative bias]

Degree of freedom

- For the estimator $V_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$:

$$
E\left[V_{n}^{2}\right]=E\left[\frac{n-1}{n} S_{n}^{2}\right]=\frac{n-1}{n} \sigma^{2}
$$

- Hence, $E\left[V_{n}^{2}\right]-\sigma^{2}=-\sigma^{2} / n$
[Negative bias]
- V_{n}^{2} is asymptotically unbiased, i.e., $E\left[V_{n}^{2}\right] \rightarrow \sigma^{2}$ when $n \rightarrow \infty$

Degree of freedom

- For the estimator $V_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$:

$$
E\left[V_{n}^{2}\right]=E\left[\frac{n-1}{n} S_{n}^{2}\right]=\frac{n-1}{n} \sigma^{2}
$$

- Hence, $E\left[V_{n}^{2}\right]-\sigma^{2}=-\sigma^{2} / n$
[Negative bias]
- V_{n}^{2} is asymptotically unbiased, i.e., $E\left[V_{n}^{2}\right] \rightarrow \sigma^{2}$ when $n \rightarrow \infty$
- Intuition on dividing by $n-1$
- S_{n}^{2} uses in its definition \bar{X}_{n}
- Thus, they are not independent
- S_{n}^{2} can be computed from $n-1$ r.v. and the mean \bar{X}_{n} (the n-th r.v. is implied)

Degree of freedom

- For the estimator $V_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$:

$$
E\left[V_{n}^{2}\right]=E\left[\frac{n-1}{n} S_{n}^{2}\right]=\frac{n-1}{n} \sigma^{2}
$$

- Hence, $E\left[V_{n}^{2}\right]-\sigma^{2}=-\sigma^{2} / n$
- V_{n}^{2} is asymptotically unbiased, i.e., $E\left[V_{n}^{2}\right] \rightarrow \sigma^{2}$ when $n \rightarrow \infty$
- Intuition on dividing by $n-1$
- S_{n}^{2} uses in its definition \bar{X}_{n}
- Thus, they are not independent
- S_{n}^{2} can be computed from $n-1$ r.v. and the mean \bar{X}_{n} (the n-th r.v. is implied)
- The degrees of freedom for an estimate is the number of values minus the number of parameters already estimated

Degree of freedom

- For the estimator $V_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$:

$$
E\left[V_{n}^{2}\right]=E\left[\frac{n-1}{n} S_{n}^{2}\right]=\frac{n-1}{n} \sigma^{2}
$$

- Hence, $E\left[V_{n}^{2}\right]-\sigma^{2}=-\sigma^{2} / n$
- V_{n}^{2} is asymptotically unbiased, i.e., $E\left[V_{n}^{2}\right] \rightarrow \sigma^{2}$ when $n \rightarrow \infty$
- Intuition on dividing by $n-1$
- S_{n}^{2} uses in its definition \bar{X}_{n}
- Thus, they are not independent
- S_{n}^{2} can be computed from $n-1$ r.v. and the mean \bar{X}_{n} (the n-th r.v. is implied)
- The degrees of freedom for an estimate is the number of values minus the number of parameters already estimated
- Assume that μ is known. Show that $\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}$ is unbiased

Unbiasedness does not carry over (no functional invariance)

- $E\left[S_{n}^{2}\right]=\sigma^{2}$ implies $E\left[S_{n}\right]=\sigma$?
- Since $g(x)=x^{2}$ is convex, by Jensen's inequality:

$$
\sigma^{2}=E\left[S_{n}^{2}\right]=E\left[g\left(S_{n}\right)\right]>g\left(E\left[S_{n}\right]\right)=E\left[S_{n}\right]^{2}
$$

which implies $E\left[S_{n}\right]<\sigma$
[Negative bias]

Unbiasedness does not carry over (no functional invariance)

- $E\left[S_{n}^{2}\right]=\sigma^{2}$ implies $E\left[S_{n}\right]=\sigma$?
- Since $g(x)=x^{2}$ is convex, by Jensen's inequality:

$$
\sigma^{2}=E\left[S_{n}^{2}\right]=E\left[g\left(S_{n}\right)\right]>g\left(E\left[S_{n}\right]\right)=E\left[S_{n}\right]^{2}
$$

which implies $E\left[S_{n}\right]<\sigma$
[Negative bias]

- In general, if T unbiased for θ does not imply $g(T)$ unbiased for $g(\theta)$
- But it holds for $g()$ linear transformation

Unbiasedness does not carry over (no functional invariance)

- $E\left[S_{n}^{2}\right]=\sigma^{2}$ implies $E\left[S_{n}\right]=\sigma$?
- Since $g(x)=x^{2}$ is convex, by Jensen's inequality:

$$
\sigma^{2}=E\left[S_{n}^{2}\right]=E\left[g\left(S_{n}\right)\right]>g\left(E\left[S_{n}\right]\right)=E\left[S_{n}\right]^{2}
$$

which implies $E\left[S_{n}\right]<\sigma$
[Negative bias]

- In general, if T unbiased for θ does not imply $g(T)$ unbiased for $g(\theta)$
- But it holds for $g()$ linear transformation
- A non-parametric (i.e., distribution free) unbiased estimator of σ does not exist

Estimators for the median and quantiles

- $T=\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)$, for X_{i} with density function $f(x)$

Estimators for the median and quantiles

- $T=\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)$, for X_{i} with density function $f(x)$
- Let m be the true median, i.e., $F(m)=0.5$:
[CLT for medians]

$$
\text { for } n \rightarrow \infty, T \sim N\left(m, \frac{1}{4 n f(m)^{2}}\right)
$$

and then for $n \rightarrow \infty$:

$$
E\left[\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)\right]=m
$$

Estimators for the median and quantiles

- $T=\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)$, for X_{i} with density function $f(x)$
- Let m be the true median, i.e., $F(m)=0.5$:
[CLT for medians]

$$
\text { for } n \rightarrow \infty, T \sim N\left(m, \frac{1}{4 n f(m)^{2}}\right)
$$

and then for $n \rightarrow \infty$:

$$
E\left[\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)\right]=m
$$

- $T=$ Quantile $_{p}\left(X_{1}, \ldots, X_{n}\right)$, for X_{i} with density function $f(x)$

Estimators for the median and quantiles

- $T=\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)$, for X_{i} with density function $f(x)$
- Let m be the true median, i.e., $F(m)=0.5$:
[CLT for medians]

$$
\text { for } n \rightarrow \infty, T \sim N\left(m, \frac{1}{4 n f(m)^{2}}\right)
$$

and then for $n \rightarrow \infty$:

$$
E\left[\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)\right]=m
$$

- $T=$ Quantile $_{p}\left(X_{1}, \ldots, X_{n}\right)$, for X_{i} with density function $f(x)$
- Let p quantile be the true quantile, i.e., $F(q)=p$:
[CLT for quantiles]

$$
\text { for } n \rightarrow \infty, T \sim N\left(q, \frac{p(1-p)}{n f(q)^{2}}\right)
$$

and then for $n \rightarrow \infty$:

$$
\begin{gathered}
E\left[\text { Quantile }_{p}\left(X_{1}, \ldots, X_{n}\right)\right]=q \\
\text { See R script }
\end{gathered}
$$

Estimator for MAD

- Median of absolute deviations (MAD):

$$
T=\operatorname{MAD}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{Med}\left(\left|X_{1}-\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)\right|, \ldots,\left|X_{n}-\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)\right|\right)
$$

- For $X \sim F$, the population MAD is $M d=G^{-1}(0.5)$ where $\left|X-F^{-1}(0.5)\right| \sim G$
- For F symmetric, $M d=F^{-1}(0.75)-F^{-1}(0.5)$.
- $M d$ is a more robust measure of scale than standard deviation

Estimator for MAD

- Median of absolute deviations (MAD):

$$
T=\operatorname{MAD}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{Med}\left(\left|X_{1}-\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)\right|, \ldots,\left|X_{n}-\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)\right|\right)
$$

- For $X \sim F$, the population MAD is $M d=G^{-1}(0.5)$ where $\left|X-F^{-1}(0.5)\right| \sim G$
- For F symmetric, $M d=F^{-1}(0.75)-F^{-1}(0.5)$.
- Md is a more robust measure of scale than standard deviation
- Under mild assumptions:
[CLT for MADs]

$$
\text { for } n \rightarrow \infty, T \sim N\left(M d, \frac{\sigma_{1}^{2}}{n}\right)
$$

where σ_{1} is defined in terms of $M d, F^{-1}(0.5), F()$.

Estimator for MAD

- Median of absolute deviations (MAD):

$$
T=\operatorname{MAD}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{Med}\left(\left|X_{1}-\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)\right|, \ldots,\left|X_{n}-\operatorname{Med}\left(X_{1}, \ldots, X_{n}\right)\right|\right)
$$

- For $X \sim F$, the population MAD is $M d=G^{-1}(0.5)$ where $\left|X-F^{-1}(0.5)\right| \sim G$
- For F symmetric, $M d=F^{-1}(0.75)-F^{-1}(0.5)$.
- Md is a more robust measure of scale than standard deviation
- Under mild assumptions:
[CLT for MADs]

$$
\text { for } n \rightarrow \infty, T \sim N\left(M d, \frac{\sigma_{1}^{2}}{n}\right)
$$

where σ_{1} is defined in terms of $M d, F^{-1}(0.5), F()$.

- Then, for $n \rightarrow \infty$:

$$
E\left[M A D\left(X_{1}, \ldots, X_{n}\right)\right]=M d
$$

Estimators for correlation

- Pearson's r estimator:

$$
r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) \cdot\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \cdot \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}} \quad \rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \cdot \sigma_{Y}}
$$

- Fisher transformation $F(r)=\operatorname{arctanh}(r)=\frac{1}{2} \log \frac{1+r}{1-r}$
- Transform a skewed sample into a normalized format

Estimators for correlation

- Pearson's r estimator:

$$
r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) \cdot\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \cdot \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}} \quad \rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \cdot \sigma_{Y}}
$$

- Fisher transformation $F(r)=\operatorname{arctanh}(r)=\frac{1}{2} \log \frac{1+r}{1-r}$
- Transform a skewed sample into a normalized format
- If X, Y have a bivariate normal distribution:

$$
F(r) \sim N\left(\operatorname{arctanh}(\rho), \frac{1}{n-3}\right)
$$

Hence:

$$
\tanh (E[F(r)])=\rho
$$

Estimators for correlation

- Pearson's r estimator:

$$
r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) \cdot\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \cdot \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}} \quad \rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \cdot \sigma_{Y}}
$$

- Fisher transformation $F(r)=\operatorname{arctanh}(r)=\frac{1}{2} \log \frac{1+r}{1-r}$
- Transform a skewed sample into a normalized format
- If X, Y have a bivariate normal distribution:

$$
F(r) \sim N\left(\operatorname{arctanh}(\rho), \frac{1}{n-3}\right)
$$

Hence:

$$
\tanh (E[F(r)])=\rho
$$

- Same for Spearman's correlation (as it is a special case of Pearson's)

Estimators for correlation

- Kendall's τ_{a} estimator:

$$
\tau_{x y}=\frac{2 \sum_{i<j} \operatorname{sgn}\left(X_{i}-X_{j}\right) \cdot \operatorname{sgn}\left(Y_{i}-Y_{j}\right)}{n \cdot(n-1)} \quad \theta=E\left[\operatorname{sgn}\left(X_{1}-X_{2}\right) \cdot \operatorname{sgn}\left(Y_{1}-Y_{2}\right)\right]
$$

- For $n>10$, the sampling distribution is well approximated as:

$$
\tau_{x y} \sim N\left(\theta, \frac{2(2 n+5)}{9 n(n-1)}\right)
$$

Hence:

$$
E\left[\tau_{x y}\right]=\theta
$$

See R script

Example: estimating the probability of zero arrivals

- X_{1}, \ldots, X_{n}, for $n=30$, observations:

$$
X_{i}=\text { no of arrivals (of a packet, of a call, etc.) in a minute }
$$

Example: estimating the probability of zero arrivals

- X_{1}, \ldots, X_{n}, for $n=30$, observations:

$$
X_{i}=\text { no of arrivals (of a packet, of a call, etc.) in a minute }
$$

- $X_{i} \operatorname{Pois}(\mu)$, where $p(k)=P(X=k)=\frac{\mu^{k}}{k!} e^{-\mu}$

$$
[E[X]=\mu]
$$

Example: estimating the probability of zero arrivals

- X_{1}, \ldots, X_{n}, for $n=30$, observations:

$$
X_{i}=\text { no of arrivals (of a packet, of a call, etc.) in a minute }
$$

- $X_{i} \operatorname{Pois}(\mu)$, where $p(k)=P(X=k)=\frac{\mu^{k}}{k!} e^{-\mu}$

$$
[E[X]=\mu]
$$

- We want to estimate $p_{0}=p(0)$, probability of zero arrivals

Example: estimating the probability of zero arrivals

- X_{1}, \ldots, X_{n}, for $n=30$, observations:

$$
X_{i}=\text { no of arrivals (of a packet, of a call, etc.) in a minute }
$$

- $X_{i} \operatorname{Pois}(\mu)$, where $p(k)=P(X=k)=\frac{\mu^{k}}{k!} e^{-\mu}$

$$
[E[X]=\mu]
$$

- We want to estimate $p_{0}=p(0)$, probability of zero arrivals
- Frequentist-based estimator S :

$$
S=\frac{\left|\left\{i \mid X_{i}=0\right\}\right|}{n}
$$

- Takes values $0 / 30,1 / 30, \ldots, 30 / 30 \ldots$ may not exactly be p_{0}
- $S=Y / n$ where $Y=I_{X_{1}=0}+\ldots+I_{X_{n}=0} \sim \operatorname{Bin}\left(n, p_{0}\right)$
- Hence, $E[S]=\frac{1}{n} E[Y]=\frac{n}{n} p_{0}=p_{0}$

Example: estimating the probability of zero arrivals

- Since $p_{0}=p(0)=e^{-\mu}$, we devise a mean-based estimator T :

$$
T=e^{-\bar{X}_{n}}
$$

Example: estimating the probability of zero arrivals

- Since $p_{0}=p(0)=e^{-\mu}$, we devise a mean-based estimator T :
- By Jensen's inequality:

$$
T=e^{-\bar{X}_{n}}
$$

$$
E[T]=E\left[e^{-\bar{X}_{n}}\right]>e^{-E\left[\bar{X}_{n}\right]}=e^{-\mu}=p_{0}
$$

Hence T is biased!

Example: estimating the probability of zero arrivals

- Since $p_{0}=p(0)=e^{-\mu}$, we devise a mean-based estimator T :

$$
T=e^{-\bar{X}_{n}}
$$

- By Jensen's inequality:

$$
E[T]=E\left[e^{-\bar{X}_{n}}\right]>e^{-E\left[\bar{X}_{n}\right]}=e^{-\mu}=p_{0}
$$

Hence T is biased!

- $T=e^{-Z / n}$ where $Z=X_{1}+\ldots+X_{n}$ is the sum of $\operatorname{Poi}(\mu)$'s, hence $Z \sim \operatorname{Poi}(n \cdot \mu)$

$$
E[T]=\sum_{k=0}^{\infty} e^{-\frac{k}{n}} \frac{(n \mu)^{k}}{k!} e^{-n \mu}=e^{-n \mu\left(1-e^{-1 / n}\right)} \rightarrow e^{-\mu}=p_{0} \text { for } n \rightarrow \infty
$$

Hence T is asymptotically unbiased!

Example: estimating the probability of zero arrivals

- Let's look at the variances:

$$
\begin{aligned}
& \operatorname{Var}(S)=\frac{1}{n^{2}} \operatorname{Var}(Y)=\frac{n p_{0}\left(1-p_{0}\right)}{n^{2}}=\frac{p_{0}\left(1-p_{0}\right)}{n} \rightarrow 0 \text { for } n \rightarrow \infty \\
& \quad \operatorname{Var}(T)=E\left[T^{2}\right]-E[T]^{2}=\ldots \text { exercise } \ldots \rightarrow 0 \text { for } n \rightarrow \infty
\end{aligned}
$$

See R script

MSE: Mean Squared Error of an estimator

- What if one estimator is unbiased and the other is biased but with a smaller variance?

MSE

The Mean Squared Error of an estimator T for a parameter θ is defined as:

$$
\operatorname{MSE}(T)=E\left[(T-\theta)^{2}\right]
$$

- An estimator T_{1} performs better than T_{2} if $\operatorname{MSE}\left(T_{1}\right)<\operatorname{MSE}\left(T_{2}\right)$

MSE: Mean Squared Error of an estimator

- What if one estimator is unbiased and the other is biased but with a smaller variance?

MSE

The Mean Squared Error of an estimator T for a parameter θ is defined as:

$$
\operatorname{MSE}(T)=E\left[(T-\theta)^{2}\right]
$$

- An estimator T_{1} performs better than T_{2} if $\operatorname{MSE}\left(T_{1}\right)<\operatorname{MSE}\left(T_{2}\right)$
- Note that:

$$
\begin{aligned}
& \operatorname{MSE}(T)=E\left[(T-E[T]+E[T]-\theta)^{2}\right]= \\
& =E\left[(T-E[T])^{2}\right]+(E[T]-\theta)^{2}+2 E[T-E[T]](E[T]-\theta)=\operatorname{Var}(T)+(E[T]-\theta)^{2}
\end{aligned}
$$

MSE: Mean Squared Error of an estimator

- What if one estimator is unbiased and the other is biased but with a smaller variance?

MSE

The Mean Squared Error of an estimator T for a parameter θ is defined as:

$$
\operatorname{MSE}(T)=E\left[(T-\theta)^{2}\right]
$$

- An estimator T_{1} performs better than T_{2} if $\operatorname{MSE}\left(T_{1}\right)<\operatorname{MSE}\left(T_{2}\right)$
- Note that:

$$
\begin{aligned}
& \operatorname{MSE}(T)=E\left[(T-E[T]+E[T]-\theta)^{2}\right]= \\
& =E\left[(T-E[T])^{2}\right]+(E[T]-\theta)^{2}+2 E[T-E[T]](E[T]-\theta)=\operatorname{Var}(T)+(E[T]-\theta)^{2}
\end{aligned}
$$

- $E[T]-\theta$ is called the bias of the estimator
- Hence, $M S E=V a r+B i a s^{2}$

MSE: Mean Squared Error of an estimator

- What if one estimator is unbiased and the other is biased but with a smaller variance?

MSE

The Mean Squared Error of an estimator T for a parameter θ is defined as:

$$
\operatorname{MSE}(T)=E\left[(T-\theta)^{2}\right]
$$

- An estimator T_{1} performs better than T_{2} if $\operatorname{MSE}\left(T_{1}\right)<\operatorname{MSE}\left(T_{2}\right)$
- Note that:

$$
\begin{aligned}
& \operatorname{MSE}(T)=E\left[(T-E[T]+E[T]-\theta)^{2}\right]= \\
& =E\left[(T-E[T])^{2}\right]+(E[T]-\theta)^{2}+2 E[T-E[T]](E[T]-\theta)=\operatorname{Var}(T)+(E[T]-\theta)^{2}
\end{aligned}
$$

- $E[T]-\theta$ is called the bias of the estimator
- Hence, $M S E=V a r+B i a s^{2}$
- A biased estimator with a small variance may be better than an unbiased one with a large variance!

MSE: Mean Squared Error of an estimator

- What if one estimator is unbiased and the other is biased but with a smaller variance?

MSE

The Mean Squared Error of an estimator T for a parameter θ is defined as:

$$
\operatorname{MSE}(T)=E\left[(T-\theta)^{2}\right]
$$

- An estimator T_{1} performs better than T_{2} if $\operatorname{MSE}\left(T_{1}\right)<\operatorname{MSE}\left(T_{2}\right)$
- Note that:

$$
\begin{aligned}
& \operatorname{MSE}(T)=E\left[(T-E[T]+E[T]-\theta)^{2}\right]= \\
& =E\left[(T-E[T])^{2}\right]+(E[T]-\theta)^{2}+2 E[T-E[T]](E[T]-\theta)=\operatorname{Var}(T)+(E[T]-\theta)^{2}
\end{aligned}
$$

- $E[T]-\theta$ is called the bias of the estimator
- Hence, $M S E=$ Var + Bias 2
- A biased estimator with a small variance may be better than an unbiased one with a large variance!
- Squared error consistent estimator: $\lim _{n \rightarrow \infty} \operatorname{MSE}\left(T_{n}\right)=0$

