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Simple linear regression model

SIMPLE LINEAR REGRESSION MODEL. In a simple linear regression

model for a bivariate dataset (z1,y1),(z2.Y2),-.., (Zn,yn), We as-
sume that x1,xs,...,x, are nonrandom and that yi,vyo,...,y, are
realizations of random variables Yi, Ys,...,Y,, satisfying

Yi=a+pz;+U; fori=1,2,...,n,

where Uy, .... U,, are independent random variables with E[U;] = 0

and Var(U;) = o2.

Regression line: y = «a + x with intercept o and slope 3
Least Square Estimators: & and B and 2
Unbiasedness: E[d] = « and E[5] = 8 and E[6?] = 02

Standard errors (estimates of \/Var(&) and 1/ Var(5)):

N P N
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Standard error of fitted values (prediction + standard error)

® For a given xp, the the estimator Y = & + f3xo has expectation
E[Y] = E[] + E[Blx0 = a + o
Hence, Y is unbiased, and y=a+ on is the best estimate for the fitted value at xq
® Variance of Y is: [See sdsin.pdf Chpt. 2]

N 1 R — X0)?
Var(Y) = 02(; + (STO))

The standard error of the fitted value is then the estimate:
AL (X — x0)?

SXX = Z Xi — %)’ iQZ(y—“

1
Prediction uncertainty at xp is reported as y + se(y)

where
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Weighted Least Squares and simple polynomial regression

® Weighted Simple Regression

n

( 76) Z( _O‘_BXI) Wi

i=1

» w; is the weight (or importance) of observation (x;, y;)
» For natural number weights, it is the same as replicating instances

® Polynomial Simple Regression

n

S(e,B) = (yi— o= Brxi — Box? — ... — Bixf)?
i=1
> Y,-:cu—l—ﬁlx,-—i—ﬂgxiz—i—...—i—ﬁkxik—&— Uifori=1,2,...,n
» May suffer from collinearity (see later in this slides)

See R script
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Non-linear simple regression and transformably linear functions

Yi = f(a, 8,x) + Ui for i =1,2,..., n for a non-linear function f()

n

S(e, 8) =D _(vi — (e, B, %))
i=1
arg ming, g S(a, 8) may be without a closed form
» use numeric search of the minimum (which may fail to find it!), e.g., gradient descent
B

Some f() can be favourably transformed, e.g., f(a, 3, x;) = ax;” (recall Power law, Zipf's)
Solve log Y; = loga + SBlog x; + U; [Linearization]
Let log & and BA be the LSE estimators. By exponentiation:
Y, = dx,-BeU"
where the error term is a multiplicative factor
See R script
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Multiple linear regression

® Multivariate dataset of observations:

(Xll’X12’ s 7X1kvy1)7' T (Xrlrer2M cee erly(a)/n)
\/f:a+ﬂ1X,-1+...+ﬁkX,k+Ui
In vector terms:
> Yi=x;-B" + U, where 8= (a, B1,...,5) and x; = (1,x},...,xK) the ith observation
» Y=X-B"+U, where Y =(Y1,...,Y,), U= (Us,...,U,), and X = (x1,...,x,)
Ordinary Least Square Estimation (OLS):

Z(y,—x, P=ly-X-8TI>  B=agmingS(B)=(X"-X)"1-XT.y

where y = (y1,...,¥n) and [|(v1, ..., vn)|| = /D1 v? is the Euclidian norm

Meaning of 3;: change of Y due to a unit change in x; all the x; with j # i unchanged!
It is @ Minimum Variance linear Unbiased Estimator [Gauss-Markov Thm.]
See R script
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Multivariate linear regression

® The multivariate linear model accommodates two or more dependent variables
Y =X3T+U

where

» Y is n x m: n observations, m dependent variables
X is n x (k +1): n observations, k independent variables +1 constants
BT is (k+1) x m: parameters for each of the m dependent variables
U is n X m: n observations, m error terms

vV vyy

® |t is not just a collection of m multiple linear regressions
® Errors in rows (observations) of U are independent, as in a single multiple linear regression
® Errors in columns (dependent variables) are allowed to be correlated.

» E.g., errors of plasma level and amitriptyline due to usage of drugs
» Hence, coefficients from the models covary!
See R script
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Other variants and generalizations

® Heteroscedastic linear models

» Relax the assumption of equal variances Var(U;) = o2

® Generalized least squares
» Ui,..., U, not necessarily independent
® Hierarchical linear models
> Nested or cluster organization (e.g., Children within classrooms within schools)
> See this intro in R
® Generalized linear models
» We'll see next at Logistic Regression
® Tobit regression
» Censored dependent variable, e.g., income cannot be negative
® Truncated regression model
» Dependent variable not available/sampled, e.g., income above a poverty threshold
[ ]

Quantile regression
» Estimate of the median (or other quantiles) instead of the mean, as in regression

8/18
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Issues: Omitted variable bias

® Suppose we omit a variable z; that belongs to the true model

Yi = a+ fix;i + fazi + U;
with 32 # 0 (i.e., Y is determined by Z)

» Under-specification of the model, due to lack of data
¢ Fitted model Y; = o + f1x + U!

» Hence, E[U,’] = E[ﬁzZ,‘ + U,'] = Przi + E[U,'] = Boz; #0
® | et & and 31 be the LSE estimators of the fitted model:

E[1] = 1 + 26 Bias(f51) = 20

where § is the slope of the regression of z; = v + dx; + U/, i.e.:

0= rxzsi
Sx
® Bias(f31) # 0 if X and Z correlated
See R script
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Issues: Multi-collinearity and variance inflation factors

® Multicollinearity: two or more independent variables (regressors) are strongly correlated.
° Yi=a+ fix} + fox? + U
® |t can be shown that for j € {1,2}:
1 o?
(1 — r2) SXXj

where r = cor(x!, x?), % = Var(U;) and SXX; = Zf(xf — x))2
® Correlation between regressors increases the variance of the estimators
® |n general, for more than 2 variables:

Var(ﬁAj) =

N 1 o?

Var()) = 4= R?)  SXX;

where RJ-2 is the coefficient of determination (R?) in the regression of x; from all other x;'s.
The term 1/(1-R?) is called variance inflation factor
See R script
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Variable selection

® Recall: when U; ~ N(0,02), we have Y; ~ N(x; - 3,02), hence we can apply MLE

1(vi=x;-B)?
® Log-likelihood is £(3) = > i 1Iog(mﬁe 2( o2 ) )
® Akaike information criterion (AIC), balances model fit against model simplicity

AIC(B) = 2|8| — 2¢(B)

¢ stepAlC(model, direction="backward") algorithm
L S={x}...,x}
2. b=AIC(S)
3. repeat
3.1 x = arg minses AIC(S \ {x})
32 v=AIC(S\{x})
33 if v<bthen S;b=S5\{x},v
4. until no change in S
5. return S

See R script
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Regularization methods: Ridge/Tikhonov

B = arg min S(B)
® Ordinary Least Square Estimation (OLS):
SB) =ly - X8|

where [|(v1,...,vn)|| = /> v? is the Euclidian norm
» Performs poorly as for prediction (overfitting) and interpretability (number of variables)

® Ridge regression:

S(8) = ly — X - BII* + 2|81

where [|B] = \/a2 + 3K, 82,

Notice that A; is not in the parameters of the minimization problem!

» Variables with minor contribution have their coefficients close to zero

» It improves prediction error by reducing overfitting through a bias-variance trade-off
» It is not a parsimonious method, i.e., does not reduce features

v
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Regularization methods: Lasso and Penalized

® Lasso (Least Absolute Shrinkage and Selection Operator) regression:

S(B)=lly — X - 8>+ A8k
where [|8]|1 = |a] + 3K, |81

» Notice that A1 is not in the parameters of the minimization problem!

» Variable with minor contribution have their coefficients equal to zero

» It improves prediction error by reducing overfitting through a bias-variance trade-off
» It is a parsimonious method, i.e., it reduces the number of features

® Penalized linear regression:

S(8) = Ily — X - BI + X2[181% + A1l Blx
» Both Ridge and Lasso regularization parameters
® How to solve the minimization problems? Lagrange multiplier method or reduction to
Support Vector Machine learning
® How to find the best A; and/or \»? Cross-validation!
See R script
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https://en.wikipedia.org/wiki/Lagrange_multiplier
https://en.wikipedia.org/wiki/Elastic_net_regularization
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Towards logistic regression

® (Consider a bivariate dataset
(X17y1)7 ) (Xnayn)

where y; € {0,1}, i.e., Y; is a binary variable

® Using directly linear regression:
Yi=a+px+ U

results in poor performances (R?)

See R script
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Towards logistic regression

® Consider a bivariate dataset
(Xla)/1)7 ] (Xna)/n)
where y; € {0,1}, i.e., Y; i binary variable
® Group by x values:
(di, A1)y .., (dm, Tm)
where di, ..., d, are the distinct values of xq,...,x, and f; is the fraction of 1's:
[ elln] [ x=diny =1}
e [l [ = di}]

and the linear model (we continue using x; but it should be d;):

f =

Fi=a+px+ U

See R script
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Towards logistic regression

® Rather than f;, we model the logit of f;
logit(Fi) = oo+ Bx; + U;
where logit and its inverse (logistic function) are:
e 1
1+ex 14e%

inv.logit(x)

logit(p) = log T

1

_D
0.5
® Why?

» F; €[0,1] while the RHS is in R
» Relation between RHS and F; is typically sigmoidal, not linear

See R script 1618



Logistic regression and generalized linear models

® Since Y;'s are binary, F; = P(Y; = 1|X = x;) ~ Ber(f;), and U; is not necessary
logit(F;) = o + Bx;
and then F; = P(Y; = 1|X = x;) = inv.logit(a + 8x;) = %
® Since F;/(1 — F;) = e**P% B can be interpreted as:
» the expected change in log odds of having the outcome per unit change in X
» e.g., 3 =0.38 in predicting heart disease from smoking: the smoking group has e’ = 1.46

times the odds of the non-smoking group of having heart disease
» e.g.,, @ = —1.93 means the probability a non-smoker has heart disease is e*/(1 + e*) = 0.13.

® Generalized linear models: family = distribution + link function
» E.g., Binomial + logit for logistic regression
» For Y; € {0,1}, actually Bernoulli + logit [Binary logistic regression]

® Since distribution is known, MLE can be adopted for estimating o and §:

Ua,B) = Z [yi log (inv.logit(o + Bx;)) + (1 — y;) log (1 — inv.logit(a + Bx;))]

= See R script 17/18



Elastic net logistic regression

® Penalized linear regression minimizes:

ly = X - B8] + X281 + A8l

» A1 = 0 is the Ridge penalty
» Ay = 0 is the Lasso penalty

® Flastic net regularization for logistic regression minimizes:

(1—«a)

~t8)+7 (B3 1812 + alalh )

» o = 0 is the Ridge penalty
» o =1 is the Lasso penalty
» )\ is to be found, e.g., by cross-validation
See R script
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