Master Program in Data Science and Business Informatics

Statistics for Data Science

Lesson 21 - Multiple, non-linear, and logistic regression

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

Simple linear regression model

SIMPLE LINEAR REGRESSION MODEL. In a simple linear regression model for a bivariate dataset $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, we assume that x_1, x_2, \ldots, x_n are nonrandom and that y_1, y_2, \ldots, y_n are realizations of random variables Y_1, Y_2, \ldots, Y_n satisfying

$$Y_i = \alpha + \beta x_i + U_i \quad \text{for } i = 1, 2, \dots, n,$$

where U_1, \ldots, U_n are independent random variables with $E[U_i] = 0$ and $Var(U_i) = \sigma^2$.

- Regression line: $y = \alpha + \beta x$ with intercept α and slope β
- Least Square Estimators: $\hat{\alpha}$ and $\hat{\beta}$ and $\hat{\sigma}^2$
- Unbiasedness: $E[\hat{\alpha}] = \alpha$ and $E[\hat{\beta}] = \beta$ and $E[\hat{\sigma}^2] = \sigma^2$
- Standard errors (estimates of $\sqrt{Var(\hat{\alpha})}$ and $\sqrt{Var(\hat{\beta})}$):

$$se(\hat{\alpha}) = \hat{\sigma}\sqrt{(\frac{1}{n} + \frac{\bar{X}_n^2}{SXX})}$$
 $se(\hat{\beta}) = \frac{\hat{\sigma}}{\sqrt{SXX}}$

Standard error of fitted values (prediction \pm standard error)

• For a given x_0 , the the estimator $\hat{Y} = \hat{\alpha} + \hat{\beta}x_0$ has expectation

$$E[\hat{Y}] = E[\hat{\alpha}] + E[\hat{\beta}]x_0 = \alpha + \beta x_0$$

- Hence, \hat{Y} is unbiased, and $\hat{y} = \hat{\alpha} + \hat{\beta}x_0$ is the best estimate for the fitted value at x_0
- Variance of \hat{Y} is: [See sdsln.pdf Chpt. 2]

$$Var(\hat{Y}) = \sigma^2(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX})$$

• The *standard error* of the fitted value is then the estimate:

$$se(\hat{y}) = \hat{\sigma}\sqrt{(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX})}$$

where

• Prediction uncertainty at x_0 is reported as $\hat{y} \pm se(\hat{y})$

Weighted Least Squares and simple polynomial regression

Weighted Simple Regression

$$S(\alpha,\beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2 w_i$$

- w_i is the weight (or importance) of observation (x_i, y_i)
- For natural number weights, it is the same as replicating instances
- Polynomial Simple Regression

$$S(\alpha,\beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta_1 x_i - \beta_2 x_i^2 - \ldots - \beta_k x_i^k)^2$$

- $Y_i = \alpha + \beta_1 x_i + \beta_2 x_i^2 + \ldots + \beta_k x_i^k + U_i$ for $i = 1, 2, \ldots, n$
- ► May suffer from collinearity (see later in this slides)

Non-linear simple regression and transformably linear functions

• $Y_i = f(\alpha, \beta, x_i) + U_i$ for i = 1, 2, ..., n for a non-linear function f()

$$S(\alpha,\beta) = \sum_{i=1}^{n} (y_i - f(\alpha,\beta,x_i))^2$$

- $arg \min_{\alpha,\beta} S(\alpha,\beta)$ may be without a closed form
 - ▶ use numeric search of the minimum (which may fail to find it!), e.g., gradient descent
- Some f() can be favourably transformed, e.g., $f(\alpha, \beta, x_i) = \alpha x_i^{\beta}$ (recall Power law, Zipf's)
- Solve $\log Y_i = \log \alpha + \beta \log x_i + U_i$

[Linearization]

• Let $\log \hat{\alpha}$ and $\hat{\beta}$ be the LSE estimators. By exponentiation:

$$Y_i = \hat{\alpha} x_i^{\hat{\beta}} e^{U_i}$$

where the error term is a multiplicative factor

Multiple linear regression

Multivariate dataset of observations:

$$(x_1^1, x_1^2, \dots, x_1^k, y_1), \dots, (x_n^1, x_n^2, \dots, x_n^k, y_n)$$

- $Y_i = \alpha + \beta_1 x_i^1 + \ldots + \beta_k x_i^k + U_i$
- In vector terms:
 - $Y_i = \mathbf{x}_i \cdot \boldsymbol{\beta}^T + U_i$, where $\boldsymbol{\beta} = (\alpha, \beta_1, \dots, \beta_k)$ and $\mathbf{x}_i = (1, x_i^1, \dots, x_i^k)$ the i^{th} observation
 - $ightharpoonup oldsymbol{Y} = oldsymbol{X} \cdot oldsymbol{eta}^T + oldsymbol{U}$, where:

$$\begin{pmatrix} \mathsf{Y}_1 \\ \mathsf{Y}_2 \\ \dots \\ \mathsf{Y}_n \end{pmatrix} = \begin{pmatrix} 1, \, \mathsf{x}_1^1, \mathsf{x}_1^2, \dots, \mathsf{x}_1^k \\ 1, \, \mathsf{x}_2^1, \mathsf{x}_2^2, \dots, \mathsf{x}_2^k \\ \dots \\ 1, \, \mathsf{x}_n^1, \mathsf{x}_n^2, \dots, \mathsf{x}_n^k \end{pmatrix} \begin{pmatrix} \alpha \\ \beta_1 \\ \dots \\ \beta_k \end{pmatrix} + \begin{pmatrix} \mathsf{U}_1 \\ \mathsf{U}_2 \\ \dots \\ \mathsf{U}_n \end{pmatrix}$$

Multiple linear regression

- Model: $\mathbf{Y} = \mathbf{X} \cdot \boldsymbol{\beta}^T + \mathbf{U}$
- Ordinary Least Square Estimation (OLS):

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i \cdot \boldsymbol{\beta}^T)^2 = \|\boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{\beta}^T\|^2 \qquad \hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} S(\boldsymbol{\beta}) = (\boldsymbol{X}^T \cdot \boldsymbol{X})^{-1} \cdot \boldsymbol{X}^T \cdot \boldsymbol{y}$$

where $\|(v_1,\ldots,v_n)\|=\sqrt{\sum_{i=1}^n v_i^2}$ is the Euclidian norm, and:

$$m{y} - m{X} \cdot m{eta}^T = \left(egin{array}{c} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \dots \\ \mathbf{y}_n \end{array}
ight) - \left(egin{array}{c} 1, \, \mathbf{x}_1^1, \, \mathbf{x}_1^2, \dots, \, \mathbf{x}_1^k \\ 1, \, \mathbf{x}_2^1, \, \mathbf{x}_2^2, \dots, \, \mathbf{x}_2^k \\ \dots \\ 1, \, \mathbf{x}_n^1, \, \mathbf{x}_n^2, \dots, \, \mathbf{x}_n^k \end{array}
ight) \left(egin{array}{c} lpha \\ eta_1 \\ \dots \\ eta_k \end{array}
ight)$$

- Meaning of β_i : change of Y due to a unit change in x_i all the x_i with $j \neq i$ unchanged!
- It is a Minimum Variance linear Unbiased Estimator

[Gauss-Markov Thm.]

Multivariate multiple linear regression

The multivariate linear model accommodates two or more dependent variables

- **Y** is $n \times m$: n observations, m dependent variables
- **X** is $n \times (k+1)$: n observations, k independent variables +1 constants
- $\triangleright \beta^T$ is $(k+1) \times m$: parameters for each of the m dependent variables
- ▶ U is $n \times m$: n observations, m error terms
- It is **not** just a collection of *m* multiple linear regressions
- Errors in columns of U, e.g., U_1^1, \ldots, U_n^1 , are independent, as in a single multiple linear regression
- Errors in rows (dependent variables) are allowed to be correlated.
 - ▶ E.g., errors of plasma level (e.g., U_1^1) and amitriptyline (e.g., U_1^2) due to usage of drugs
 - ▶ Hence, coefficients from the models for the various dependent variables covary!

Other variants and generalizations

- Heteroscedastic linear models
 - Relax the assumption of equal variances $Var(U_i) = \sigma^2$
- Generalized least squares
 - $ightharpoonup U_1, \ldots, U_n$ not necessarily independent
- Hierarchical linear models
 - ▶ Nested or cluster organization (e.g., Children within classrooms within schools)
 - ► See this intro in R
- Generalized linear models
 - ► We'll see next at Logistic Regression
- Tobit regression
 - ► Censored dependent variable, e.g., income cannot be negative
- Truncated regression model
 - ▶ Dependent variable not available/sampled, e.g., income above a poverty threshold
- Quantile regression
 - ▶ Estimate of the median (or other quantiles) instead of the mean, as in regression

Optional references

Michael H. Kutner, Christopher J. Nachtsheim, John Neter, and William Li (2005) Applied Linear Statistical Models.

5th edition McGraw-Hill