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Simple linear regression model

SIMPLE LINEAR REGRESSION MODEL. In a simple linear regression

model for a bivariate dataset (z1,y1),(z2.Y2),-.., (Zn,yn), We as-
sume that x1,xs,...,x, are nonrandom and that yi,vyo,...,y, are
realizations of random variables Yi, Ys,...,Y,, satisfying

Yi=a+pz;+U; fori=1,2,...,n,

where Uy, .... U,, are independent random variables with E[U;] = 0

and Var(U;) = o2.

Regression line: y = «a + x with intercept o and slope 3
Least Square Estimators: & and B and 2
Unbiasedness: E[d] = « and E[5] = 8 and E[6?] = 02

Standard errors (estimates of \/Var(&) and 1/ Var(5)):

N P N
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Standard error of fitted values (prediction + standard error)

® For a given xp, the the estimator Y = & + f3xo has expectation
E[Y] = E[] + E[Blx0 = a + o
Hence, Y is unbiased, and y=a+ on is the best estimate for the fitted value at xq
® Variance of Y is: [See sdsin.pdf Chpt. 2]

N 1 R — X0)?
Var(Y) = 02(; + (STO))

The standard error of the fitted value is then the estimate:
AL (X — x0)?

SXX = Z Xi — %)’ iQZ(y—“

1
Prediction uncertainty at xp is reported as y + se(y)

where
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Weighted Least Squares and simple polynomial regression

® Weighted Simple Regression

n

( 76) Z( _O‘_BXI) Wi

i=1

» w; is the weight (or importance) of observation (x;, y;)
» For natural number weights, it is the same as replicating instances

® Polynomial Simple Regression

n

S(e,B) = (yi— o= Brxi — Box? — ... — Bixf)?
i=1
> Y,-:cu—l—ﬁlx,-—i—ﬂgxiz—i—...—i—ﬁkxik—&— Uifori=1,2,...,n
» May suffer from collinearity (see later in this slides)

See R script
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Non-linear simple regression and transformably linear functions

Yi = f(a, 8,x) + Ui for i =1,2,..., n for a non-linear function f()

n

S(e, 8) =D _(vi — (e, B, %))
i=1
arg ming, g S(a, 8) may be without a closed form
» use numeric search of the minimum (which may fail to find it!), e.g., gradient descent
B

Some f() can be favourably transformed, e.g., f(a, 3, x;) = ax;” (recall Power law, Zipf's)
Solve log Y; = loga + SBlog x; + U; [Linearization]
Let log & and BA be the LSE estimators. By exponentiation:
Y, = dx,-BeU"
where the error term is a multiplicative factor
See R script
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Multiple linear regression

® Multivariate dataset of observations:
1.2 k 1.2 k
(X Xty ooy X[ Y1)y e e ey (s X5y e oo s X s Vi)
L4 )/,‘:Oé—f—ﬂlX,-l—F...—FﬁkXik—‘rU;
® |n vector terms:

» Yi=x;-B" + U, where 8= (a, B1,...,5) and x; = (1,x},...,xK) the ith observation
> Y:X-,BT+U, where:

1,2 k

Y1 1 X, X7, ..., X @ U;
1,2 k

Y, _ 1 X3, %5,...,% 51 n U,
1,2 k

Y, 1, x5, x5, .., X, Bk U,
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Multiple linear regression

* Model: ¥ =X 3" +U
® Ordinary Least Square Estimation (OLS):

n

S(B) = Z(y/ —xi- BT =|y-X-87|? B = argmingS(B) = (XT-xX)t.x".y

i=1

where ||(vi,...,v,y)|| = +/>r_; v? is the Euclidian norm, and:

1 .2 k

Y1 1, X3, xg, ..., X «
1 .2 k

y—X,BT: Y2 _ 1,X2,X27...,X2 ﬁl
1 .2 k

yn 11 Xn)Xn7"'?Xn 61(

® Meaning of §;: change of Y due to a unit change in x; all the x; with j # i unchanged!
® |t is a Minimum Variance linear Unbiased Estimator [Gauss-Markov Thm.]
See R script
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Multivariate multiple linear regression

® The multivariate linear model accommodates two or more dependent variables

T
Y=X3"+U
1 m 1 .2 k 1 m 1 m
Yi,..., Y] 1, x3,x¢, ..., X as, ..., Ui, ..., U]
1 m 1 .2 k 1 m 1 m
Y3,...,Ys _ 1, %5,X5, ..., % Bi, ..., 01 n Us,..., U5
1 m 1 .2 k 1 m 1 m
Yr,ooos Yo 1, X, X5y ooy X By, BE U,,..., U]

Y is n x m: n observations, m dependent variables

X is n x (k+ 1): n observations, k independent variables +1 constants
BT is (k+1) x m: parameters for each of the m dependent variables
U is n x m: n observations, m error terms

vV vy VvYy

® |t is not just a collection of m multiple linear regressions
® Errors in columns of U, e.g., Ui,..., UL, are independent, as in a single multiple linear regression
® Errors in rows (dependent variables) are allowed to be correlated.

» E.g., errors of plasma level (e.g., U}) and amitriptyline (e.g., U?) due to usage of drugs

» Hence, coefficients from the models for the various dependent variables covary!
See R script 8/10



Other variants and generalizations

® Heteroscedastic linear models

» Relax the assumption of equal variances Var(U;) = o2

® Generalized least squares
» Ui,..., U, not necessarily independent
® Hierarchical linear models
> Nested or cluster organization (e.g., Children within classrooms within schools)
> See this intro in R
® Generalized linear models
» We'll see next at Logistic Regression
® Tobit regression
» Censored dependent variable, e.g., income cannot be negative
® Truncated regression model
» Dependent variable not available/sampled, e.g., income above a poverty threshold
[ ]

Quantile regression
» Estimate of the median (or other quantiles) instead of the mean, as in regression
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Optional references

@ Michael H. Kutner, Christopher J. Nachtsheim, John Neter, and William Li (2005)
Applied Linear Statistical Models.
5th editionMcGraw-Hill
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