Statistics for Data Science

Lesson 27 - Bootstrap and resampling methods

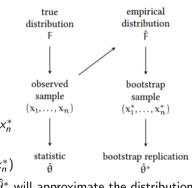
Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

Bootstrap principle

- Let $X_1, \ldots, X_n \sim F$ be a random sample
 - ▶ with unknown distribution F
- Estimator $T = h(X_1, \dots, X_n)$, e.g., $\bar{X}_n = (X_1 + \dots + X_n)/n$
- From a dataset x_1, \ldots, x_n , we can
 - derive a point estimate $\hat{\theta} = h(x_1, \dots, x_n)$
 - or, derive an estimate \hat{F} of F
- From \hat{F} we can generate (a lot of) bootstrap samples x_1^*, \ldots, x_n^*
 - ightharpoonup as realizations of $X_1^*,\ldots,X_n^*\sim \hat{F}$
 - and then (a lot of) bootstrap point estimates $\hat{ heta}^* = h(x_1^*, \dots, x_n^*)$
- By the **Glivenko-Cantelli Thm**, the empirical distribution of $\hat{\theta}^*$ will approximate the distribution of $T^* = h(X_1^*, \dots, X_n^*)$ and then of T

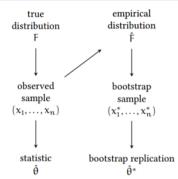
BOOTSTRAP PRINCIPLE. Use the dataset $x_1, x_2, ..., x_n$ to compute an estimate \hat{F} for the "true" distribution function F. Replace the random sample $X_1, X_2, ..., X_n$ from F by a random sample $X_1^*, X_2^*, ..., X_n^*$ from \hat{F} , and approximate the probability distribution of $h(X_1, X_2, ..., X_n)$ by that of $h(X_1^*, X_2^*, ..., X_n^*)$.



- How to derive \hat{F} from x_1, \ldots, x_n ?
- If we know nothing about F, use the empirical distribution:

$$\hat{F}(a) = F_n(a) = \frac{|\{i \in 1, \dots, n \mid x_i \le a\}|}{n}$$

- How to generate a bootstrap sample x_1^*, \ldots, x_n^* ?
 - $\triangleright x_i^*$ is chosen randomly from \hat{F}
 - i.e., x_i^* s chosen randomly from x_1, \ldots, x_n (our dataset)
- Hence, a bootstrap dataset x_1^*, \dots, x_n^* is obtained by random sampling with replacement!
- Often the bootstrap approximation of the distribution of T will improve if we somehow normalize
 T by relating it to a corresponding feature of the "true" distribution.
 - rather than approximating the distribution of \bar{X}_n by the one of \bar{X}_n^*
 - better to approximate $\bar{X}_n \mu$ by $\bar{X}_n^* \mu^*$, where $\mu^* = E[\hat{F}] = \bar{x}_n = (x_1 + \ldots + x_n)/n$ [See remarks 18.1 and 18.2 of textbook]



EMPIRICAL BOOTSTRAP SIMULATION (FOR $\bar{X}_n - \mu$). Given a dataset x_1, x_2, \ldots, x_n , determine its empirical distribution function F_n as an estimate of F, and compute the expectation

$$\mu^* = \bar{x}_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

corresponding to F_n .

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from F_n .
- 2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - \bar{x}_n,$$

where

 $\bar{x}_n^* = \frac{x_1^* + x_2^* + \dots + x_n^*}{n}.$

Repeat steps 1 and 2 many times.

- Use the empirical distribution of $\delta^* = \bar{x}_n^* \bar{x}_n$ (realizations of $\Delta^* = \bar{X}_n^* \bar{x}_n$)
 - for estimating $\delta = \bar{x}_n \mu$ as $mean(\delta^*)$
 - and then estimate μ as $\hat{\mu} = \bar{x}_n mean(\delta^*)$ [main idea: subtract estimated bias]
 - with estimated bias $E[\bar{X}_n] \mu \approx E[\bar{X}_n^*] \bar{x}_n = E[\Delta^* + \bar{x}_n] \bar{x}_n \approx mean(\delta^*)$
 - with standard error $\sqrt{Var(\bar{X}_n)} = \sqrt{Var(\bar{X}_n \mu)} \approx \sqrt{Var(\bar{X}_n^* \bar{x}_n)} = \sqrt{Var(\Delta^*)} \approx sd(\delta^*)_{/18}$

EMPIRICAL BOOTSTRAP SIMULATION (FOR $\bar{X}_n - \mu$). Given a dataset x_1, x_2, \ldots, x_n , determine its empirical distribution function F_n as an estimate of F, and compute the expectation

$$\mu^* = \bar{x}_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

corresponding to F_n .

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \dots, x_n^*$ from F_n .
- $2. \;$ Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - \bar{x}_n$$

where

$$\bar{x}_n^* = \frac{x_1^* + x_2^* + \dots + x_n^*}{n}.$$

Repeat steps 1 and 2 many times.

- Use the empirical distribution of $\delta^* = \bar{x}_n^* \bar{x}_n$ for estimating
 - confidence interval (c_l, c_u) for $\delta = \bar{x}_n \mu$ as $(q_{\alpha/2}, q_{1-\alpha/2})$ of δ^* distribution
 - $c_l \le \delta = \bar{x}_n \mu \le c_u$ implies $\bar{x}_n c_u \le \mu \le \bar{x}_n c_l$, i.e. c.i. for μ is $(\bar{x}_n c_u, \bar{x}_n c_l)$

boot.ci method in R confidence intervals:

- type='basic': $(\bar{x}_n-q_{1-lpha/2},\bar{x}_n-q_{lpha/2})$ with quantiles over the distribution of δ^*
- type='perc': $(q_{lpha/2},q_{1-lpha/2})$ with quantiles over the distribution of $ar{x}_n^*$
- type='norm': $(\bar{x}_n q_{1-\alpha/2}, \bar{x}_n q_{\alpha/2})$ with quantiles over $N(mean(\delta^*), var(\delta^*))$
- type='bca': bias (and skewness) correction and acceleration

boot.ci method in R confidence intervals:

• type='stud': $(\bar{x}_n-q_{1-\alpha/2}\frac{s_n}{\sqrt{n}},\bar{x}_n-q_{\alpha/2}\frac{s_n}{\sqrt{n}})$ with quantiles over the distribution of t^*

EMPIRICAL BOOTSTRAP SIMULATION FOR THE STUDENTIZED MEAN. Given a dataset x_1, x_2, \ldots, x_n , determine its empirical distribution function F_n as an estimate of F. The expectation corresponding to F_n is $\mu^* = \bar{x}_n$.

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from F_n .
- $2. \;\;$ Compute the studentized mean for the bootstrap dataset:

$$t^* = \frac{\bar{x}_n^* - \bar{x}_n}{s_n^* / \sqrt{n}},$$

where \bar{x}_n^* and s_n^* are the sample mean and sample standard deviation of $x_1^*, x_2^*, \dots, x_n^*$.

Repeat steps 1 and 2 many times.

- Bootstrap approach applies to any estimator, not only the mean
- Example 1: the German Tank problem

$$T_2 = \frac{n+1}{n}M_n - 1 \qquad \qquad E[T_2] = N$$

- Example 2: linear regression coefficients
 - ▶ 95% confidence intervals (assuming $\underline{U_i \sim \mathcal{N}(0, \sigma^2)}$):

$$\hat{\beta} \pm t_{n-2,0.025} se(\hat{\beta})$$
 $\hat{\alpha} \pm t_{n-2,0.025} se(\hat{\alpha})$

An application of empirical bootstrap

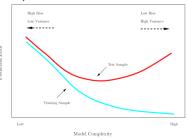
- Bootstrap principle: for $X \sim F$
 - lacktriangle the empirical distribution of $\Delta^*=ar{X}_n^*-ar{x}_n$ approximates the distribution of $\Delta=ar{X}_n-\mu$
- Application: estimate $P_F(|\bar{X}_n \mu| > 1)$ as
 - $lacksquare P_{\hat{\mathcal{F}}}(|ar{X}_n^*-ar{x}_n|>1)$ and then by the fraction of $\delta^*=ar{x}_n^*-ar{x}_n$ such that $|\delta^*|>1$
- How many bootstrap samples?
 - ▶ There are $\binom{2n-1}{n-1}$ distinct bootstrap samples
 - Suggested to use at least 1000 bootstrap samples
 - ▶ **Jackknife resampling**: bootstrap samples $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$, for $i = 1, \ldots, n$
- How good is the approximation by bootstrap?
 - ightharpoonup Small perturbation to data-generating process should produce small perturbation of the parameter to estimate (θ)
 - ▶ Problems with extreme values, e.g., percentiles, maximum, etc.

Risk (or Expected Prediction Error EPE)

The risk w.r.t. a loss function ℓ_{θ} is $R(\theta_{TRUE}, \theta) = E_{(W,C) \sim f_{\theta_{TRUE}}}[\ell_{\theta}(C, W)].$

- Decision rule $y_{\theta}^+(w)$ (classifier) or score function $s_{\theta}(w)$ (binary probabilistic classifier)
- E.g., 0-1 loss $\ell_{\theta}(c, w) = \mathbb{1}_{y_{\theta}^{+}(w) \neq c}$
- Empirical risk estimate risk on a **holdout set** (test set) of n_h observations:

$$\hat{r} = \frac{1}{n_h} \sum_{i=1}^{n_h} \ell_{\theta}(c_i, w_i)$$
 se $= \sqrt{\frac{\hat{r}(1-\hat{r})}{n_h}}$



Drawbacks: variability of training/test set, and then of empirical risk estimates

Risk (or Expected Prediction Error EPE)

The risk w.r.t. a loss function ℓ_{θ} is $R(\theta_{TRUE}, \theta) = E_{(W,C) \sim f_{\theta_{TRUE}}}[\ell_{\theta}(C, W)].$

- Decision rule $y_{\theta}^+(w)$ (classifier) or score function $s_{\theta}(w)$ (binary probabilistic classifier)
- E.g., 0-1 loss $\ell_{\theta}(c, w) = \mathbb{1}_{y_{\theta}^+(w) \neq c}$
- Empirical risk estimate risk using **random sampling** (k times random split training-test): $\hat{r} = \frac{1}{\nu} \sum_{i=1}^{k} \hat{r}^{j}$ with $\hat{r}^{j} = \frac{1}{n} \sum_{i=1}^{n_{j}} \ell_{\theta}(c_{i}^{j}, w_{i}^{j})$
- ullet Standard deviation calculated over the k folds, with

$$se = \sqrt{\frac{1}{k-1} \sum_{j=1}^{k} (\hat{r}^{j} - \hat{r})^{2}}$$

Wrong!! As test sets (and then \hat{r}^{j} 's) are not independent!

Risk (or Expected Prediction Error EPE)

The risk w.r.t. a loss function ℓ_{θ} is $R(\theta_{TRUE}, \theta) = E_{(W,C) \sim f_{\theta_{TRUE}}}[\ell_{\theta}(C, W)].$

- Decision rule $y_{\theta}^+(w)$ (classifier) or score function $s_{\theta}(w)$ (binary probabilistic classifier)
- E.g., 0-1 loss $\ell_{\theta}(c, w) = \mathbb{1}_{y_{\theta}^{+}(w) \neq c}$
- Empirical risk estimate risk using k-fold cross-validation (independent test sets):

$$\hat{r} = \frac{1}{k} \sum_{j=1}^{k} \hat{r}^j$$
 with $\hat{r}^j = \frac{1}{n/k} \sum_{i=1}^{n/k} \ell_{\theta}(c_i^j, w_i^j)$

Standard deviation calculated over the k folds, with

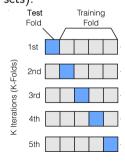
$$se = \sqrt{rac{1}{k-1}\sum_j(\hat{r}^j - \hat{r})^2}$$

Wrong!! As training sets (and then \hat{r}^{j} 's) are not independent! or, with

$$se = \sqrt{\frac{\hat{r}(1-\hat{r})}{n}}$$

if classifier is stable over the folds (see [Kohavi, 1995])

• Setting k = n is the **leave-one out cross-validation** (LOOCV)



- Can the bootstrap estimate prediction error?
- E.g., training = bootstrap x_1^*, \dots, x_n^* , test = original dataset x_1, \dots, x_n ?
 - ▶ No, as training-test would overlap with probability 63.2%
 - and then, prediction error would be under-estimated
- training = bootstrap x_1^*,\ldots,x_n^* , test = original dataset \ bootstrap $\{x_1,\ldots,x_n\}\setminus\{x_1^*,\ldots,x_n^*\}$
 - ▶ .632 bootstrap algorithm for *k* bootstrap runs

$$\hat{r} = \frac{1}{k} \sum_{i} (0.632 \cdot \hat{r}^{j} + 0.368 \cdot \hat{r}_{tr})$$

where \hat{r}^{j} is the loss on j^{th} bootstrap run, and \hat{r}_{tr} is the loss on the original dataset

- [Kohavi, 1995, Kim, 2009] conclusions and recommendations:
 - ▶ Bootstrap has low variance, but it is extremely biased

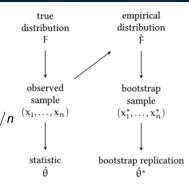
 \Box by averaging multiple k-fold cross-validation

- ▶ *k*-fold cross-validation has low bias and variance can be controlled
- ▶ Recommendation: use **repeated (stratified)** k-**fold cross-validation**, with $k \approx 10$
- [Vanwinckelen, 2012] warns against repeated, and it recommends k-fold cross-validation

[Prove it!]

Parametric bootstrap principle

- Let $X_1, \ldots, X_n \sim F(\gamma)$ be a random sample
 - lacktriangle with known family \emph{F} but $\emph{unknown}$ parameter γ
- Estimator $T = h(X_1, \dots, X_n)$, e.g., $\bar{X}_n = (X_1 + \dots + X_n)/n$
- From a dataset x_1, \ldots, x_n , we can
 - derive a point estimate $\hat{\theta} = h(x_1, \dots, x_n)$
 - lacktriangle or, derive an estimate $\hat{\gamma}$ of γ
- From $F(\hat{\gamma})$ we can generate (a lot of) bootstrap samples x_1^*,\dots,x_n^*
 - ▶ as realizations of $X_1^*, \ldots, X_n^* \sim F(\hat{\gamma})$ [a form of Monte Carlo simulation] and then (a lot of) bootstrap point estimates $\hat{\theta}^* = h(x_1^*, \ldots, x_n^*)$
- By the **Glivenko-Cantelli Thm**, the empirical distribution of $\hat{\theta}^*$ will approximate the distribution of $T^* = h(X_1^*, \dots, X_n^*)$ and then of T



Parametric bootstrap

PARAMETRIC BOOTSTRAP SIMULATION (FOR $\bar{X}_n - \mu$). Given a dataset x_1, x_2, \ldots, x_n , compute an estimate $\hat{\theta}$ for θ . Determine $F_{\hat{\theta}}$ as an estimate for F_{θ} , and compute the expectation $\mu^* = \mu_{\hat{\theta}}$ corresponding to $F_{\hat{\theta}}$.

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \dots, x_n^*$ from $F_{\hat{\theta}}$.
- 2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - \mu_{\hat{\theta}},$$

where

$$\bar{x}_n^* = \frac{x_1^* + x_2^* + \dots + x_n^*}{n}.$$

Repeat steps 1 and 2 many times.

- Use the empirical distribution of $\delta^* = \bar{x}_n^* \mu_{\hat{\theta}}$ for estimating
 - confidence interval (c_l, c_u) for $\delta = \bar{x}_n \mu$ as $(q_{\alpha/2}, q_{1-\alpha/2})$ of δ^* distribution
 - $c_l \le \delta = \bar{x}_n \mu \le c_u$ implies $\bar{x}_n c_u \le \mu \le \bar{x}_n c_l$, i.e. c.i. for μ is $(\bar{x}_n c_u, \bar{x}_n c_l)$

Application: distribution fitting

- Consider x_1, \ldots, x_n realizations of a random sample $X_1, \ldots, X_n \sim F$
- Is the dataset from an $Exp(\lambda)$ for some λ ? I.e., is it $F = Exp(\lambda)$?
- We estimate $\hat{\lambda} = 1/\bar{x}_n$

[MLE estimation]

We measure how close is the dataset to the distribution as:

$$t_{ks} = \sup_{a \in \mathbb{R}} |F_n(a) - F_{\hat{\lambda}}(a)|$$

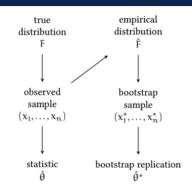
where:

- $ightharpoonup F_n(a)$ is the empirical cumulative distribution function of x_1, \ldots, x_n
- $F_{\hat{\lambda}}(a) = 1 e^{\hat{\lambda}a}$, for $a \ge 0$, is the CDF of $Exp(\hat{\lambda})$
- $ightharpoonup t_{ks}$ is called the *Kolmogorov-Smirnov* distance
- if $F = Exp(\lambda)$ then both $F_n \approx F$ and $F_{\hat{\lambda}} \approx F$, and then $F_n \approx F_{\hat{\lambda}}$, so that t_{ks} is small
- if $F \neq Exp(\lambda)$ then $F_n \approx F \neq Exp(\lambda) \approx F_{\hat{\lambda}}$, so that t_{ks} is large

Application: distribution fitting

- For the software dataset from the textbook
 - $\hat{\lambda} = 0.0015$ and $t_{ks} = 0.17$
- Is $t_{ks} = 0.17$ expected or an extreme value?
- Let's study the distribution of the bootstrap estimator:

$$T_{ks} = \sup_{a \in \mathbb{R}} |F_n^*(a) - F_{\hat{\Lambda}^*}(a)|$$



where:

- $lacksquare X_1^*,\ldots,X_n^*\sim \textit{Exp}(\hat{\lambda})$ is a bootstrap sample
- $ightharpoonup F_n^*(a)$ is the empirical cumulative distribution of the bootstrap sample
- $\hat{\Lambda}^* = 1/\bar{X}_n^*$
- It turns out $P(T_{ks} > 0.17) \approx 0$, unlikely that $Exp(\lambda)$ is the right model

Optional references

Ji-HyunKim (2009)

Estimating classification error rate: Repeated Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap.

Computational Statistics & Data Analysis, 53 (11): 3735-3745

Ron Kohavi (1995)

A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.

Proc. of IJCAI 1995: 1137-1145

Gitte Vanwinckelen and Hendrik Blockeel (2012)

On Estimating Model Accuracy with Repeated Cross-Validation.

Proc. of BeneLearn and PMLS 2012: 39 - 44

Michael R. Chernick and Robert A. LaBudde (2011)

An introduction to Bootstrap methods with applications to R.

John Wiley & Sons, Inc.