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Critical values and p-values

• Critical region K : the set of values that reject H0 in favor of H1 at significance level α
• Critical values: values on the boundary of the critical region
• p-value: the probability of obtaining test results at least as extreme as the results actually

observed, under the assumption that H0 is true
• t ∈ K iff p-value ≤ α
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Misues of p-values

Misinterpretations of p-values, [Greenland et al, 2016]

• The p-value is the probability that the null hypothesis is true, or the probability that the
alternative hypothesis is false. A p-value indicates the degree of compatibility between a
dataset and a particular hypothetical explanation

• The 0.05 significance level is the one to be used: No, it is merely a convention. There is
no reason to consider results on opposite sides of any threshold as qualitatively different.

• A large p-value is evidence in favor of the test hypothesis: A p-value cannot be said to
favor the test hypothesis except in relation to those hypotheses with smaller p-values

• If you reject the test hypothesis because p ≤ 0.05, the chance you are in error is 5%: No,
the chance is either 100% or 0%. The 5% refers only to how often you would reject it,
and therefore be in error.
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s-values

• Shannon information value or surprisal value (s-value) is − log2 p (unit: bit)
▶ p = 0.5 ⇒ s = 1 surprising as getting one heads on 1 fair coin toss
▶ p = 0.10 ⇒ s = 3.32 surprising as getting all heads on 3 fair coin tosses
▶ p = 0.0001 ⇒ s = 13.29 surprising as getting all heads on 13 fair coin tosses
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The multiple comparisons problem
• Single test H0 : θ = 0, with significance level α = 0.05 [false positive rate]

▶ test is called significant when we reject H0

▶ α is Type I error, probability of rejecting H0 when it is true

• Multiple tests, say m = 20
▶ E.g., H i

0 : θi = 0 for i = 1, . . . ,m where θi is the expectation of a subpopulation

• What is the probability of rejecting at least one H i
0 when all of them are true?

▶ For independent tests: P(∪m
i=1{pi ≤ α}) = 1− P(∩m

i=1{pi > α}) = 1− (1− α)m

and then 1− (0.95)20 ≈ 0.64
▶ For dependent tests: P(∪m

i=1{pi ≤ α}) ≤
∑

i P({pi ≤ α}) = m · α, and then ≤ 20 · 0.05 = 1

Family-wise error rate (FWER)

The FWER is the probability of making at least one Type I error in a
family of n tests. If the tests are independent:

αFWER = 1− (1− α)m

If the test are dependent: αFWER ≤ m · α
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Multiple comparisons: corrections

Objective: achieve significant tests (p ≤ α′) such that αFWER ≤ α

• Bonferroni correction (most conservative one):
▶ scale significance level α′ = α/m [invert α = m · α′]
▶ Notice: p ≤ α′ is equivalent to scale p-values and test p ·m ≤ α

Thus αFWER ≤ m · α′ = α

• Šidák correction (exact for independent tests):
▶ scale significance level α′ = 1− (1− α)1/m [invert α = 1− (1− α′)m]
▶ Notice: p ≤ α′ is equivalent to scale p-values and test 1− (1− p)m ≤ α

Thus αFWER = 1− (1− α′)m = α

See R script
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False Discovery Rate and q-values

• False Positive Rate: FPR = FP/(FP + TN)
▶ Corrections control for FPR since FWER = P(FP > 0|H i

0 i = 1, . . . ,m)

• Drawback: acting on α increases FNR = FN/(FN + TP)

• False Discovery Rate: FDR = FP/(FP + TP) [Korthauer et al, 2019]
▶ FDR = 0.05 means 5% of rejected H0’s are actually true

• q-value is P(H0|T ≥ t) [vs. p = P(T ≥ t|H0)]
▶ FDR can be controlled by requiring q ≤ threshold

See R script
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Distribution fitting and quality of fitting
• Dataset x1, . . . , xn realization of X1, . . . ,Xn ∼ F

• Distribution fitting: What is a plausible F?
▶ Useful in Data Science for understanding the data generation process, for checking

assumptions (e.g., normality of noise in LR), for checking data distribution changes, etc.
▶ Parametric approaches:

□ Assume F = F (λ) for some family F , and estimate λ as λ̂
□ Maximum Likelihood Estimation (point estimate):

λ̂ = argmaxλL(λ)

□ Parametric bootstrap (p-value):

Tks = sup
a∈R

|F ∗
n (a)− FΛ̂∗(a)|

▶ Non-parametric approaches:
□ Empirical distribution
□ Kernel Density Estimation

• Quality of fitting: Among several fits F1, . . . ,Fk , which one is the best?
▶ Goodness of fit: measure of how good/bad is Fi in fitting the data?
▶ Comparison: which one between two F1 and F2 is better?
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Quality of fitting

• Loss functions (to be minimized)
▶ Akaike information criterion (AIC), balances model fit against model simplicity

AIC (F (λ)) = 2|λ| − 2ℓ(λ)

▶ Bayesian information criterion (BIC), stronger balances over model simplicity

BIC (F (λ)) = |λ| log n − 2ℓ(λ)

• Statistics (continuous data):
▶ KS test H0 : X ∼ F H1 : X ̸∼ F with Kolmogorov-Smirnov (KS) statistic:

D = sup
a∈R

|Fn(a)− F (a)| ∼ K

▶ LR test H0 : X ∼ F1 H1 : X ∼ F2 with the likelihood-ratio test:

λLR = log
L(F1(λ1))

L(F2(λ2))
= ℓ(F1(λ1))− ℓ(F2(λ2)) with − 2λLR ∼ χ2(1)

See R script
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Chi-square distribution

Chi-square distribution

The Chi-square distribution with k degrees of freedom χ2(k) has density:

f (x) =
1

2k/2Γ(k/2)
x

k/2−1e−x/2

Let X1, . . . ,Xk ∼ N(0, 1). Then Y =
∑k

i=1 X
2
i ∼ χ2(k)
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Common distributions

• Probability distributions at Wikipedia

• Probability distributions in R

• C. Forbes, M. Evans,
N. Hastings, B. Peacock (2010)
Statistical Distributions, 4th Edition
Wiley
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Quality of fitting
• Statistics (discrete data):

▶ Pearson’s Chi-Square test
H0 : X ∼ F H1 : X ̸∼ F with χ2 statistic:

χ2 =
∑
Ni>0

(Ni − ni )
2

ni
= n ·

∑
Ni>0

(Ni/n − p(i))2

p(i)
∼ χ2(df )

where Ni number of observations of value i , ni = n · p(i) expected number of observations
(rescaled), and df = |{i | Ni > 0}| − 1 is the number of observed values minus 1.
χ2 = ∞ if for some i : ni = 0

▶ Yates’s correction for continuity
It corrects for approximating the discrete probability of observed frequencies by the
continuous chi-squared distribution

χ2 =
∑
Ni>0

(|Ni − ni | − 0.5)2

ni

It increase Type II error, so do not use!

See R script
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Comparing two datasets

• Dataset x1, . . . , xn realization of X1, . . . ,Xn ∼ F1

• Dataset y1, . . . , ym realization of Y1, . . . ,Yn ∼ F2

• H0 : F1 = F2 H1 : F1 ̸= F2

• Continuous data: KS statistics

D = sup
a∈R

|F1(a)− F2(a)| ∼ K

• Discrete data: χ2 statistics

χ2 =
∑

Ri>0∨Si>0

(
√

m
n Ri −

√
n
mSi )

2

Ri + Si
∼ χ2(df )

where Ri (resp., Si ) is the number of variables in X1, . . . ,Xn (resp., Y1, . . . ,Ym) which are equal
to i , df = |{i |Ri > 0 ∨ Si > 0}| − 1

• Useful to detect covariate drift (data stability) from source to target datasets (training set vs
deployment set) [See also Lessons 16 and 35 for association measures]

See R script
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https://en.wikipedia.org/wiki/Concept_drift
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Mingxiang Teng, Chinmay Shukla, Eric J. Alm, and Stephanie C. Hicks (2019)

A practical guide to methods controlling false discoveries in computational biology.

Genome Biology 20, article 118

Sander Greenland, Stephen J. Senn, Kenneth J. Rothman, John B. Carlin, Charles Poole, Steven N.
Goodman, and Douglas G. Altman (2016)

Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations.

European Journal of Epidemiology 31, pages 337–350
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