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Distribution fitting and quality of fitting
• Dataset x1, . . . , xn realization of X1, . . . ,Xn ∼ F

• Distribution fitting: What is a plausible F?
▶ Useful in Data Science for understanding the data generation process, for checking

assumptions (e.g., normality of noise in LR), for checking data distribution changes, etc.
▶ Parametric approaches:

□ Assume F = F (λ) for some family F , and estimate λ as λ̂
□ Maximum Likelihood Estimation (point estimate): [See Lesson 19]

λ̂ = argmaxλL(λ)

□ Parametric bootstrap (p-value): [See Lesson 28]

Tks = sup
a∈R

|F ∗
n (a)− FΛ̂∗(a)|

▶ Non-parametric approaches:
□ Empirical distribution Fn [Glivenko-Cantelli Thm]
□ Kernel Density Estimation [See Lesson 15]

• Quality of fitting: Among several fits F1, . . . ,Fk , which one is the best?
▶ Goodness of fit: measure of how good/bad is Fi in fitting the data?
▶ Comparison: which one between two F1 and F2 is better?
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https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem


Quality of fitting

• Loss functions (to be minimized)
▶ Akaike information criterion (AIC), balances model fit against model simplicity

AIC (F (λ)) = 2|λ| − 2ℓ(λ)

▶ Bayesian information criterion (BIC), stronger balances over model simplicity

BIC (F (λ)) = |λ| log n − 2ℓ(λ)

• Statistics (continuous data):
▶ KS test H0 : X ∼ F H1 : X ̸∼ F with Kolmogorov-Smirnov (KS) statistic:

D = sup
a∈R

|Fn(a)− F (a)| ∼ K

▶ LR test H0 : X ∼ F1 H1 : X ∼ F2 with the likelihood-ratio test:

λLR = log
L(F1(λ1))

L(F2(λ2))
= ℓ(F1(λ1))− ℓ(F2(λ2)) with − 2λLR ∼ χ2(1)

See R script
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Chi-square distribution

Chi-square distribution

The Chi-square distribution with k degrees of freedom χ2(k) has density:

f (x) =
1

2k/2Γ(k/2)
x

k/2−1e−x/2

Let X1, . . . ,Xk ∼ N(0, 1). Then Y =
∑k

i=1 X
2
i ∼ χ2(k)
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Common distributions

• Probability distributions at Wikipedia

• Probability distributions in R

• C. Forbes, M. Evans,
N. Hastings, B. Peacock (2010)
Statistical Distributions, 4th Edition
Wiley
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https://en.wikipedia.org/wiki/List_of_probability_distributions
https://CRAN.R-project.org/view=Distributions


Quality of fitting
• Statistics (discrete data):

▶ Pearson’s Chi-Square test
H0 : X ∼ F H1 : X ̸∼ F with χ2 statistic:

χ2 =
∑
Ni>0

(Ni − ni )
2

ni
= n ·

∑
Ni>0

(Ni/n − p(i))2

p(i)
∼ χ2(df )

where Ni number of observations of value i , ni = n · p(i) expected number of observations
(rescaled), and df = |{i | Ni > 0}| − 1 is the number of observed values minus 1.
χ2 = ∞ if for some i : ni = 0

▶ Yates’s correction for continuity
It corrects for approximating the discrete probability of observed frequencies by the
continuous chi-squared distribution

χ2 =
∑
Ni>0

(|Ni − ni | − 0.5)2

ni

It increases Type II error, so do not use it!

See R script
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https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
https://en.wikipedia.org/wiki/Yates%27s_correction_for_continuity


Comparing two datasets

• Dataset x1, . . . , xn realization of X1, . . . ,Xn ∼ F1

• Dataset y1, . . . , ym realization of Y1, . . . ,Yn ∼ F2

• H0 : F1 = F2 H1 : F1 ̸= F2

• Continuous data: KS statistics

D = sup
a∈R

|F1(a)− F2(a)| ∼ K

• Discrete data: χ2 statistics

χ2 =
∑

Ri>0∨Si>0

(
√

m
n Ri −

√
n
mSi )

2

Ri + Si
∼ χ2(df )

where Ri (resp., Si ) is the number of variables in X1, . . . ,Xn (resp., Y1, . . . ,Ym) which are equal
to i , df = |{i |Ri > 0 ∨ Si > 0}| − 1

• Useful to detect covariate drift (data stability) from source to target datasets (training set vs
deployment set) [See also Lessons 16 and 33 for association measures]

See R script
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https://en.wikipedia.org/wiki/Concept_drift


Testing independence/association: discrete data

• Pearson’s Chi-Square test of independence
• X and Y discrete (finite) distributions
• (x1, y1) . . . , (xn, yn) bivariate observed dataset
• H0 : X ⊥⊥ Y H1 : X ̸⊥⊥ Y
• Test statistic:

χ2 =
∑
i ,j

(Oi ,j − Ei ,j)
2

Ei ,j
= n

∑
i ,j

(Oi ,j/n − pi ,.p.,j)
2

pi ,.p.,j
∼ χ2(df )

where Oi ,j is the number of observations of value X = i and Y = j , Ei ,j = npi ,.p.,j where
pi ,. =

∑
j Oi ,j/n and p.,j =

∑
i Oi ,j/n. df = (nx − 1)(ny − 1) where nx (resp., ny ) is the

size of the support of X (resp., Y )
• Exact test when n is small: Fisher’s exact test
• Paired data (e.g., before and after taking a drug): McNemar’s test

See R script
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https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
https://en.wikipedia.org/wiki/Fisher%27s_exact_test
https://en.wikipedia.org/wiki/McNemar%27s_test


Association between nominal variables: χ2-based
• Association measures based on Pearson χ2 [See [Lesson 16]

▶ ϕ coefficient (or MCC, Matthews correlation coefficient)
□ For 2× 2 contingency tables: [Exercise. Show ϕ = |rxy |]

ϕ =

√
χ2

n
∈ [0, 1]

▶ Cramer’s V
□ For contingency tables larger than 2× 2:

V =

√
χ2

n ·min {r − 1, c − 1} ∈ [0, 1]

where r and c are the number of rows and columns
▶ Tschuprov’s T [sames as V if r = c]

□ For contingency tables larger than 2× 2:

T =

√
χ2

n ·
√

(r − 1)(c − 1)
∈ [0, 1]

where r and c are the number of rows and columns

See R script
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The G-test and Mutual Information

• G-test of independence

• X and Y discrete (finite) distributions

• (x1, y1) . . . , (xn, yn) bivariate observed dataset

• H0 : X ⊥⊥ Y H1 : X ̸⊥⊥ Y

• Test statistic:

G = 2
∑
i,j

Oi,j log
Oi,j

Ei,j
= 2

∑
i,j

Oi,j log
Oi,j

npi,.p.,j
∼ χ2(df )

where Oi,j is the number of observations of value X = i and Y = j , Ei,j = npi,.p.,j where
pi,. =

∑
j Oi,j/n and p.,j =

∑
i Oi,j/n. df = (nx − 1)(ny − 1) where nx (resp., ny ) is the size of

the support of X (resp., Y )

• Preferrable to Chi-Squared when numbers (Oij or Eij) are small, asymptotically equivalent

• G = 2 · n · I (O,E ) where I (O,E ) is the mutual information between O and E [See Lesson 16]

See R script
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https://en.wikipedia.org/wiki/G-test


Testing correlation: continuous data

• Population correlation:

ρ =
E [(X − µX ) · (Y − µY )]

σX · σY
• Pearson’s correlation coefficient:

r =

∑n
i=1(xi − x̄) · (yi − ȳ)√∑n

i=1(xi − x̄)2 ·
∑n

i=1(yi − ȳ)2

• Assumption: joint distribution of X ,Y is bivariate normal (or large sample)
• (x1, y1) . . . , (xn, yn) bivariate observed dataset
• H0 : ρ = 0 H1 : ρ ̸= 0
• Test statistics:

T =
r
√
n − 2√
1− r2

∼ t(n − 2)

See R script
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Testing AUC-ROC

• Binary classifier score sθ(w) ∈ [0, 1] where sθ(w) estimate η(w) = PθTRUE (C = 1|W = w)

• ROC Curve
▶ TPR(p) = P(sθ(w) ≥ p|C = 1) and FPR(p) = P(sθ(w)|C = 0)
▶ ROC Curve is the scatter plot TPR(p) over FPR(p) for p ranging from 1 down to 0
▶ AUC-ROC is the area below the curve What does AUC-ROC estimate?
▶ Linearly related to Somer’s D correlation index (a.k.a. Gini coefficient) [See Lesson 16]
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Testing AUC-ROC
• AUC is the probability of correct identification of the order between two instances:

AUC = PθTRUE (sθ(W 1) < sθ(W 2)|CW 1 = 0,CW 2 = 1)

where (W 1,CW 1) ∼ fθTRUE and (W 2,CW 2) ∼ fθTRUE

• sθ(W1), . . . , sθ(Wn) ∼ FθTRUE |C=1 and sθ(V1), . . . , sθ(Vm) ∼ FθTRUE |C=0

U =
n∑

i=1

m∑
j=1

S(sθ(Wi ), sθ(Vj)) S(X ,Y ) =

 1 if X > Y
1/2 if X = Y
0 if X < Y

▶ AUC-ROC = U/(n ·m) is an estimator of AUC

• Related to W = U + n(n+1)
2 , where W is the Wilcoxon rank-sum test statistics [See Lesson 31]

• Normal approximation, DeLong’s algorithm or bootstrap for confidence interval estimation

See R script
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https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test

