
1 On Cramér-Rao’s bound and MLE

Consider the likelihood and log-likelihood functions:

L(θ) =

n∏
i=1

fθ(Xi) l(θ) = lnL(θ) =

n∑
i=1

lnfθ(Xi)

Since X1, . . . , Xn are i.i.d., this is also true for Y1 = ∂
∂θ lnfθ(X1), . . . , Yn = ∂

∂θ lnfθ(Xn).
The log-likelihood takes its maximum at the zero’s of its derivative, which is called the score
function:

S(θ) =
∂

∂θ
l(θ) =

n∑
i=1

∂

∂θ
lnfθ(Xi) =

n∑
i=1

Yi

The expectation of each Yi’s is zero:

E
[
Yi
]

=

∫
(
∂

∂θ
lnfθ(x))fθ(x)dx =

∫
1

fθ(x)
(
∂

∂θ
fθ(x))fθ(x)dx

=

∫
∂

∂θ
fθ(x)dx =

∂

∂θ

∫
fθ(x)dx =

∂

∂θ
1 = 0

Hence, by linearity of expectation, we have:

E
[
S(θ)

]
=

n∑
i=1

E
[
Yi
]

= 0

The variance of S(θ) is called the Fisher information, and it is the quantity:

I(θ) = E
[
S(θ)2

]
It turns out12 that:

I(θ) = E
[
S(θ)2

]
= E

[
(

n∑
i=1

Yi)(

n∑
j=1

Yj)
]

= E
[ n∑
i=1

Y 2
i +

n∑
i=1

n∑
j=1,j 6=i

YiYj
]

= E
[ n∑
i=1

Y 2
i

]
+

n∑
i=1

n∑
j=1,j 6=i

E
[
Yi
]
E
[
Yj
]

(1)

= E
[ n∑
i=1

Y 2
i

]
+ 0 (2)

= E
[ n∑
i=1

(
∂

∂θ
lnfθ(Xi))

2
]

= nE
[
(
∂

∂θ
lnfθ(X))2

]
(3)

where X ∼ fθ. Important: some textbooks define I(θ) using a single random variable,
i.e., as E

[
( ∂∂θ lnfθ(X))2

]
. In such cases, it must be multiplied by n whenever it is used.

1 (1) follows since E
[
YiYj

]
= E

[
Yi

]
E
[
Yj

]
for independent Yi, Yj .

2 (2) follows since E
[
Yi

]
= 0.



We can now link Fisher information to the Cramér-Rao inequality from [1, Remark 20.2]:

Var(T ) ≥ 1

nE
[
( ∂∂θ lnfθ(X))2

] for all θ,

by observing that, due to (3), the right-hand side is the inverse of I(θ), i.e.:

Var(T ) ≥ 1

nE
[
( ∂∂θ lnfθ(X))2

] =
1

I(θ)
for all θ.

2 Example

The textbook [1, pages 324-325] shows that the unbiased MLE estimator of the mean µ of

a normal distribution N(µ, σ2) is X̄n = (X1 + . . .+Xn)/n. Let X ∼ 1
σ
√
2π
e−

1
2 (
x−µ
σ )2 .

The Fisher information is:

I(θ) = nE
[
(
∂

∂µ
lnfµ(X))2

]
= nE

[
(
X − µ

σ2
)2
]

=
n

σ4
E
[
(X − µ)2

]
=

n

σ4
Var(X) =

n

σ4
σ2 =

n

σ2
=

1

Var(X̄n)

where the last equality follows from the Central Limit Theorem. By taking the reciprocals:

Var(X̄n) =
1

I(θ)

we have that the lower bound of the Cramér-Rao inequality is reached, hence X̄n is a MVUE
(Minimum Variance Unbiased Estimator).
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