Statistical Methods for Data Science Lesson 13 - Unbiased estimators. Efficiency and MSE

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

Statistical model for repeated measurement

- A dataset x_1, \ldots, x_n consists of repeated measurements of a phenomenon we are interested in understanding
 - E.g., measurement of the speed of light
- We model a dataset as the realization of a random sample

Random sample

A random sample is a collection of i.i.d. random variables $X_1, \ldots, X_n \sim F(\alpha)$, where F() is the distribution and α its parameter(s).

- Challenging questions:
 - How to determine E[X], Var(X), or other functions of X?
 - How to determine α , assuming to know the form of *F*?
 - How to determine both F and α ?

An example

Table 17.1. Michelson data on the speed of light.

- What is an estimate of the true speed of light?
- $x_1 = 850$, or min x_i , or max x_i , or $\bar{x}_n = 852.4$?

An example

• Speed of light dataset

$$X_i = c + \epsilon_i$$

where ϵ_i is measurement error with $E[\epsilon_i] = 0$ and $Var(\epsilon_i) = \sigma$

- We are then interested in $E[X_i] = c$
- How to estimate?
- Use some info. For $X = X_1$:

$$E[X] = E[X_1] = c$$
 $Var(X) = Var(X_1) = \sigma$

• Use all info. For $\bar{X}_n = (X_1 + \ldots + X_n)/n$:

$$E[\bar{X}_n] = c$$
 $Var(\bar{X}_n) = \frac{Var(X_1)}{n} = \frac{\sigma}{n}$

• Hence, for $n \to \infty$, $Var(\bar{X}_n) \to 0$

Estimate

Estimate

An estimate t is a value that obtained as a function h() over a dataset x_1, \ldots, x_n :

 $t = h(x_1, \ldots, x_n)$

- $t = \bar{x}_n = 852.4$ is an estimate of the speed of light
- $t = x_1 = 850$ is another estimate
- Since x_1, \ldots, x_n are modelled as realizations of X_1, \ldots, X_n , estimates are realizations of the corresponding sample statistics $h(X_1, \ldots, X_n)$

Estimator

An estimate $t = h(x_1, ..., x_n)$ is a realization of the random variable:

$$T = h(X_1,\ldots,X_n)$$

The random variable T is called an *estimator*.

- $T = \bar{X}_n = (X_1 + \dots, X_n)/n$ is an estimator of the speed of light
- $T = X_1$ is another estimator

Parameter estimation

- The probability distribution of T is called the sampling distribution of T
- The standard deviation of the sampling distribution is called the standard error (SE)

Unbiased estimator

An estimator $T = h(X_1, \ldots, X_n)$ of some parameter Θ is *unbiased* if:

$$E[T] = \Theta$$

If the difference $E[T] - \Theta$, called the *bias* of T, is non-zero, T is called a *biased* estimator.

- $E[T] > \Theta$ is a positive bias, $E[T] < \Theta$ is a negative bias
- Sometimes, ${\cal T}$ is written as $\hat{\Theta}$, e.g., $\hat{\mu}$ denotes an estimator of μ
- When is an estimator better than another one?
- Is there a best possible estimator?

Efficiency of unbiased estimators

Let T_1 and T_2 be unbiased estimators of the same parameter Θ . The estimator T_2 is *more efficient* than T_1 if:

 $Var(T_2) < Var(T_1)$

- The relative efficiency of T_2 w.r.t. T_1 is $Var(T_1)/Var(T_2)$
- Speed of light example:
 - $E[X_1] = E[X_2] = \ldots = E[\overline{X}_n] = c$, i.e., all unbiased estimators
- The mean is more efficient than a single value

$$Var(\bar{X}_n) = \sigma/n < \sigma = Var(X_1)$$
 $\frac{Var(X_1)}{Var(\bar{X}_n)} = n$

Unbiased estimators for expectation and variance

UNBIASED ESTIMATORS FOR EXPECTATION AND VARIANCE. Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution with finite expectation μ and finite variance σ^2 . Then

$$\bar{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

is an *unbiased estimator for* μ and

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

is an unbiased estimator for σ^2 .

- Estimates: sample mean \bar{x}_n and sample variance s_n^2 (see previous lesson)
- $E[\bar{X}_n] = (E[X_1] + \ldots + E[X_n])/n = \mu$ and, by CLT, $\bar{X}_n \sim N(\mu, \sigma^2/n)$
- Why division by n-1 in S_n^2 ? [Bessel's correction]

$E[S_n^2] = \sigma$

(1)
$$E[X_i - \bar{X}_n] = E[X_i] - E[\bar{X}_n] = \mu - \mu = 0$$

(2) $Var(X_i - \bar{X}_n) = E[(X_i - \bar{X}_n)^2] - E[X_i - \bar{X}_n]^2 = E[(X_i - \bar{X}_n)^2]$ [by (1)]
(3) $X_i - \bar{X}_n = X_i - \frac{1}{n} \sum_{j=1}^n X_j = X_i - \frac{1}{n} X_j - \frac{1}{n} \sum_{j=1, j \neq i}^n X_j = \frac{n-1}{n} X_i - \frac{1}{n} \sum_{j=1, j \neq i}^n X_j$
(4) From (3):
 $Var(X_i - \bar{X}_n) = \frac{(n-1)^2}{n^2} \sigma^2 + \frac{1}{n^2} (n-1) \sigma^2 = \frac{n-1}{n} \sigma^2$

• Therefore:

$$E[S_n^2] = \frac{1}{n-1} \sum_{i=1}^n E[(X_i - \bar{X}_n)^2] = \frac{1}{n-1} \sum_{i=1}^n Var(X_i - \bar{X}_n) = \frac{1}{n-1} n \frac{n-1}{n} \sigma^2 = \sigma^2$$

- For normal distribution of X_i 's, $S_n^2 \sim Gam(n-1,\sigma^2)$ and $Var(S_n^2) = \frac{2\sigma^4}{n-1}$
- In general, $Var(S^2_n)
 ightarrow 0$ when $n
 ightarrow \infty$

Degree of freedom

• For the estimator
$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
:

$$E[V_n^2] = E[\frac{n-1}{n}S_n^2] = \frac{n-1}{n}\sigma^2$$

- Hence, $E[V_n^2] \sigma^2 = -\sigma^2/n$ [Negative bias]
- V_n^2 is asymptotically unbiased, i.e., $E[V_n^2] \to \sigma^2$ when $n \to \infty$
- Intuition on dividing by n-1
 - S_n^2 uses in its definition \bar{X}_n
 - Thus, they are not independent
 - ▶ S_n^2 can be computed from n-1 r.v. and the mean \bar{X}_n (the *n*-th r.v. is implied)
- The *degrees of freedom* for an estimate is the number of values minus the number of parameters already estimated
- Assume that μ is known. Show that $\frac{1}{n} \sum_{i=1}^{n} (X_i \mu)^2$ is unbiased [Prove it]

Unbiasedness does not carry over

•
$$E[S_n^2] = \sigma^2$$
 implies $E[S_n] = \sigma$?

• Since $g(x) = x^2$ is convex, by Jensen's inequality:

$$\sigma^{2} = E[S_{n}^{2}] = E[g(S_{n})] > g(E[S_{n}]) = E[S_{n}]^{2}$$

which implies $E[S_n] < \sigma$ [Negative bias]

- In general, if T unbiased for Θ does not imply g(T) unbiased for $g(\Theta)$
- A non-parametric (i.e., distribution free) unbiased estimator of σ does not exist

Estimators for the median and quantiles

- $T = Med(X_1, ..., X_n)$, for X_i with density function f(x)
- Let *m* be the true median, i.e., F(m) = 0.5:

for $n \to \infty, T \sim N(m, \frac{1}{4nf(m)^2})$

and then for $n \to \infty$:

$$E[Med(X_1,\ldots,X_n)] = m$$

- $T = Quantile_p(X_1, ..., X_n)$, for X_i with density function f(x)
- Let p quantile be the true quantile, i.e., F(q) = p:

for
$$n \to \infty, T \sim N(q, \frac{p(1-p)}{nf(q)^2})$$

and then for $n \to \infty$:

 $E[Quantile_p(X_1,\ldots,X_n)] = p$

[CLT for medians]

[CLT for quantiles]

Estimator for MAD

• Median of absolute deviations (*MAD*):

 $T = MAD(X_1, \ldots, X_n) = Med(|X_1 - Med(X_1, \ldots, X_n)|, \ldots, |X_n - Med(X_1, \ldots, X_n)|)$

- For $X \sim F$, the population MAD is $Md = G^{-1}(0.5)$ where $|X F^{-1}(0.5)| \sim G$
- For F symmetric, $Md = F^{-1}(0.75) F^{-1}(0.5)$.
- ► Md is a more robust measure of scale than standard deviation
- Under mild assumptions:

for
$$n \to \infty$$
, $T \sim N(Md, \frac{\sigma_1^2}{n})$

where σ_1 is defined in terms of Md, $F^{-1}(0.5)$, F(). Then, for $n \to \infty$:

$$E[MAD(X_1,\ldots,X_n)] = Md$$

[CLT for MAD]

Estimators for correlation

• Pearson's *r* estimator:

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) \cdot (Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \cdot \sum_{i=1}^{n} (Y_i - \bar{Y})^2}} \qquad \rho = \frac{E[(X - \mu_X) \cdot (Y - \mu_Y)]}{\sigma_X \cdot \sigma_Y}$$

- Fisher transformation $F(r) = \operatorname{arctanh}(r) = \frac{1}{2} \log \frac{1+r}{1-r}$
- Transform a skewed sample into a normalized format
- ► If X, Y have a bivariate normal distribution:

$$F(r) \sim N(arctanh(
ho), \frac{1}{n-3})$$

Hence:

$$tanh(E[F(r)]) = \rho$$

• Same for Spearman's correlation (as it is a special case of Pearson's)

Estimators for correlation

• Kendall's τ_a estimator:

$$\tau_{xy} = \frac{2\sum_{i < j} \operatorname{sgn}(X_i - X_j) \cdot \operatorname{sgn}(Y_i - Y_j)}{n \cdot (n - 1)} \qquad \Theta = E[\operatorname{sgn}(X_1 - X_2) \cdot \operatorname{sgn}(Y_1 - Y_2)]$$

• For n > 10, the sampling distribution is well approximated as:

$$au_{xy} \sim N(\Theta, rac{2(2n+5)}{9n(n-1)})$$

Hence:

$$E[au_{xy}] = \Theta$$

See R script

Example: estimating the probability of zero arrivals

• X_1, \ldots, X_n , for n = 30, observations:

 X_i = no of arrivals (of a packet, of a call, etc.) in a minute

•
$$X_i \ Pois(\mu)$$
, where $p(k) = P(X = k) = \frac{\mu^k}{k!} e^{-\mu}$ $[E[X] = \mu]$

- We want to estimate $p_0 = p(0)$, probability of zero arrivals
- Frequentist-based estimator S:

$$S = \frac{|\{i \mid X_i = 0\}|}{n}$$

- Takes values $0/30, 1/30, \ldots, 30/30 \ldots$ may not exactly be p_0
- S = Y/n where $Y = I_{X_1=0} + ... + I_{X_n=0} \sim Bin(n, p_0)$
- ► Hence, $E[S] = \frac{1}{n}E[Y] = \frac{n}{n}p_0 = p_0$ [S is unbiased]

Example: estimating the probability of zero arrivals

• Since $p_0 = p(0) = e^{-\mu}$, we devise an estimator T:

$$T = e^{-\bar{X}_n}$$

By Jensen's inequality:

$$E[T] = E[e^{-\bar{X}_n}] > e^{-E[\bar{X}_n]} = e^{-\mu} = p_0$$

Hence T is biased! • $T = e^{-Z/n}$ where $Z = X_1 + \ldots + X_n$ is the sum of $Poi(\mu)$'s, hence $Z \sim Poi(n \cdot \mu)$

$$E[T] = \sum_{k=0}^{\infty} e^{-\frac{k}{n}} \frac{(n\mu)^k}{k!} e^{-n\mu} = e^{-n\mu(1-e^{-1/n})} \to e^{-\mu} = p_0 \text{ for } n \to \infty$$

Hence T is asymptotically unbiased!

[Exercise 19.9]

See R script

Example: estimating the probability of zero arrivals

• Let's look at the variances:

$$Var(S) = \frac{1}{n^2} Var(Y) = \frac{np_0(1-p_0)}{n^2} = \frac{p_0(1-p_0)}{n} \to 0 \text{ for } n \to \infty$$
$$Var(T) = E[T^2] - E[T]^2 = \dots \text{ exercise } \dots \to 0 \text{ for } n \to \infty$$
$$See \text{ R script}$$

MSE: Mean Squared Error of an estimator

• What if one estimator is unbiased and the other is biased but with a smaller variance?

MSE

The Mean Squared Error of an estimator T for a parameter Θ is defined as:

 $MSE(T) = E[(T - \theta)^2]$

- An estimator T_1 performs better than T_2 if $MSE(T_1) < MSE(T_2)$
- Note that:

$$MSE(T) = E[(T - E[T] + E[T] - \theta)^{2}] =$$

= $E[(T - E[T])^{2}] + (E[T] - \theta)^{2} + 2E[T - E[T]](E[T] - \theta) = Var(T) + (E[T] - \theta)^{2}$

- $E[T] \theta$ is called the *bias* of the estimator
- Hence, $MSE = Var + Bias^2$
- A biased estimator with a small variance may be better than an unbiased one with a large variance!

See R script

Example: number of German tanks

• Tanks' ID drawn at random without replacement from 1,..., N. Objective: estimate N.

Example: number of German tanks

- Let x_1, \ldots, x_n be the observed ID's
- E.g., 61, 19, 56, 24, 16 with n = 5
- They are realizations of X_1, \ldots, X_n draws with replacement from $1, \ldots, N$
 - X_1, \ldots, X_n is not a random sample, as they are not independent!
 - The marginal distribution is $X_i \sim U(1, N)$

[prove it, or see Sect. 9.3]

- Estimator based on the mean
 - we have:

$$E[\bar{X}_n] = E[X_i] = \frac{N+1}{2}$$

We can define an estimator

$$T_1=2\bar{X}_n-1$$

- T_1 is unbiased: $E[T_1] = 2E[\bar{X}_n] 1 = N$
- E.g., $t_1 = 2(61 + 19 + 56 + 24 + 16)/5 1 = 69.4$

Example: number of German tanks

- Let x_1, \ldots, x_n be the observed ID's
- E.g., 61, 19, 56, 24, 16 with n = 5
- Estimator based on the maximum
 - Let $M_n = \max \{X_1, \ldots, X_n\}$
 - ► We have:

[see Sect. 20.1]

$$E[M_n] = n \frac{N+1}{n+1}$$

We can define an estimator

$$T_2 = \frac{n+1}{n}M_n - 1$$

- T_2 is unbiased: $E[T_2] = \frac{n+1}{n}E[M_n] 1 = N$
- E.g., $t_2 = 6/5 \max \{61, 19, 56, 24, 16\} 1 = 72.2$

See R script