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Simple linear regression model

SIMPLE LINEAR REGRESSION MODEL. In a simple linear regression

model for a bivariate dataset (z1,y1),(z2.Y2),-.., (Zn,yn), We as-
sume that xq,xs,...,x, are nonrandom and that yi,yo,..., , Yn are
realizations of 1andom variables Y1, Ys, ..., Y, satisfying

Yi=a+pz;+U; fori=1,2,...,n,

where Uy, ..., .U, are independent random variables with E[U;] = 0
and V‘n(U) o2

® Regression line: y = a4 Bx with intercept o and slope (3
® | east Square Estimators: & and Aﬁ
® Unbiasedness: E[@] = a and E[f] =
® Moreover: Var(&) = o?(1/n+ >’<2/5XX) and Var(3) = 02/5XX
* Standard errors (estimates of \/Var(&) and \/ Var(j3)):
se(@) = 5/ + o) se() = 2
’ SXX - VSXX
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Standard error of fitted values (predictions)

e For a given xp, the the estimator Y = & + 3xg has expectation E[\A/] =a+ Bxo
® Hence, y = a + Xy, is the best estimate for the fitted value
® Variance of Y is: [See notes2.pdf]
~ 1 ()_(n — Xo)2
Var(Y) = 0?(= + o
ar(Y) =0+ o)

® The standard error of the fitted value is then the estimate:

se(Y) = 6’\/(3, + (an;;o)z)

iQZ(Y_A

1

where

SXX = Z — Xn)?

See R script
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Weighted Least Squares and simple polynomial regression

® Weighted Simple Regression

n

S(a, B) = Z(Yi —a — Bx)*w;

i=1

> w; is the weight (or importance) of observation (x;, y;)
» For integer weights, it is the same as replicating instances

® Polynomial Simple Regression

n

S(e.8) = (i — a — Burxi — Box? — ... — Bixf)?

i=1

» Yi=a+ Bixi+ Box?+ ...+ BixK+ Ui fori=1,2,....n
See R script
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Non-linear regression and transformably linear functions

Non-linear Simple Regression, for a generic function f()
Y, = f(a,ﬁ,x,-)—}—U,- fori=1,2,...,n

n

S(OK,B) = Z(.Vi - f(Oé,ﬁ,X,'))2

i=1

min S(«, B) maybe without a closed form
» use numeric search of the minimum (which may fail to find!), e.g., gradient descent
> Idea: y; — f(a, B+ 6,x) =y — fa, B, %) + J5f(a, 8, x)

® Some f() can be favourably transformed, e.g., f(«o, 3, x;) = axiﬂ [Linearization]
® Solve log Y; = log a 4 log 8x; + U; and then by exponentiation:
Y, = axiﬁeu"

where the error term is a multiplicative factor (must be checked with residual analysis)
See R script
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Multiple linear regression

® Multivariate dataset:
(X%7X27 cee 7X{(7y1)7’ ) (Xivxsv v 7Xrl7<7yn)

o Yi=a+Bixt+...+ Bxt+ Ui
In vector terms:

» Yi=x;-68+ U, Where,BT:(a,Bl,...7ﬁk) and x; = (x},...,x¥)

> Y =X B+U where Y = (Yi,...,Y,), U= (Ur,...,U,), and X = (x1,...,%n)
Ordinary Least Square Estimation (OLS):

n

SB) =) (vi—xi-BP=ly—-X-BI°  B=agmingS(8)=(X"-X)""-XT .y

i=1

where y = (y1,...,¥n) and [[(v1, ..., vn)|| = /D7 v? is the Euclidian norm

® Meaning of §;: change of Y due to a unit change in x; all the x; with j # i unchanged!
It is the best (ie., smallest MSE) linear unbiased estimator [Gauss-Markov Thm.]
See R script
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Omitted variable bias

o Y. =a+ Bxi+ U;
® There exists a third (unknown) variable Z such that:

» X and Z are correlated
» Y is determined by Z

Yi = o+ Bix; + B2zi + U! but we do not know z;'s
E[U,'] = E[/B2Z,' + U,/] = Boz; + E[U,{] = Boz; 75 0
The problem that cannot be solved by increasing the number of observations!

See R script
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Multi-collinearity and variance inflation factors

® Multicollinearity: two or more independent variables (regressors) are strongly correlated.
° Yi=a+ fix} + fox? + U
® |t can be shown that for j € {1,2}:
1 o?
(1 — r2) SXXj

where r = cor(x!, x?), % = Var(U;) and SXX; = Zf(xf — %n)?
® Correlation between regressors increase the variance of the estimators
® |n general, for more than 2 variables:

Var(ﬁAj) =

N 1 o?

Var(B)) = 7= R?)  SXX;

where RJ-2 is the coefficient of determination (R?) in the regression of x; from all other x;'s.
® The term 1/(1-r?) is called variance inflation factor
See R script
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Variable selection

® Recall: when U; ~ N(0,0?), we have Y; ~ N(x; - 3,02)

1(vi=x;-B)?
® Log-likelihood is £(3) = > i 1Iog(mﬁe 2( o2 ) )
® Akaike information criterion (AIC), balances model fit against model simplicity

AIC(B) = 2|8| — 2¢(B)

¢ stepAlC(model, direction="backward") algorithm
L S={x}...,x}
2. b=AIC(S)
3. repeat
3.1 x = argmin, . sAIC(S \ {x})
32 v=AIC(S\{x})
33 if v<bthen S;b=S5\{x},v
4. until no change in S
5. return S

See R script
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Regularization methods

A

B = argmingS(B3)
® Ordinary Least Square Estimation (OLS):

SB) =lly - X -BI?

where [|(v1,...,vn)|| = /> v? is the Euclidian norm

® Ridge regression:

S(8) = ly — X - BII* + 2|81
where [|8]? = o + 31, 57

» Notice that A, is not in the parameters of the minimization problem!

» Variables with minor contribution have their coefficients close to zero

» It improves prediction error by reducing overfitting through a bias-variance trade-off
» It is not a parsimonious method, i.e., does not reduce features
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Regularization methods

® Lasso (least absolute shrinkage and selection operator) regression:
S(B) = lly = X - 81> + M8l
k
where |81 = |o + 321 |6il.

» Notice that A\ is not in the parameters of the minimization problem!

» Variable with minor contribution have their coefficients equal to zero

» It improves prediction error by reducing overfitting through a bias-variance trade-off
» It is a parsimonious method, i.e., does reduce features

® Penalized linear regression (or Elastic net regularization):

S(B) = lly = X - BI7 + 22811 + Al BII3

» Both Ridge and Lasso regularization parameters
® How to solve the minimization problems? Lagrange multiplier method or reduction to
Support Vector Machine learning
® How to find the best A; and/or \»? Cross-validation!
See R script
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Multivariate linear regression

® The multivariate linear model accommodates two or more dependent variables
Y=XB+U

where
» Y is n x m: n observations, m dependent variables
X is n x (k +1): n observations, k dependent variables +1 constants
Bis (k+ 1) x m: k parameters § +1 parameter « for each of the m dependent variables
U is n x m: n observations, m error terms

vvYyy

® |t is not just a collection of m multiple linear regressions
® Errors in rows (observations) of U are independent, as in a single multiple linear regression
® Errors in columns (dependent variables) are allowed to be correlated.
» E.g., errors of plasma level and amitriptyline due to usage of drugs
» Hence, coefficients from the models covary! More later on confidence intervals for coefficients
See R script
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Logistic regression

® (Consider a bivariate dataset
(X17y1)7 sy (Xnayn)
where y; € {0,1}, i.e., Y; i binary variable
® Using directly use linear regression:

Yi=a+ 68x+ U;

results in poor performances (R?)

See R script
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Logistic regression

® Consider a bivariate dataset
(x1,51), - -+ (Xn; ¥n)
where y; € {0,1}, i.e., Y; i binary variable
® Group by x values:
(di, A1)y, (dm,Tm)

where dy, ..., d, are the distinct values of xi,...,x, and f; is the fraction of 1's:

o lUelln]|x=diny =1}
i el | x = di}|

e Consider the linear model:
Fi=a+ Bx;+ U;

See R script

14/17



Logistic regression

® Rather than f;, we model the logit of f;
logit(F;) = a+ Bx; + U;

where logit and its inverse (logistic function) are:

X

logit(p) = log 1 f 5 inv.logit(x) = 5o

See R script
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Logistic regression and generalized linear models

® Since Y;'s are binary, F; = P(Y; = 1|X = x;) ~ Ber(f;), where n; = |{}| and U; is not
necessary
IOgit(Fi) = a + Bx;
and then F; = P(Y; = 1|X = x;) = inv.logit(a + Bx;) = le;ZiX/;Xi
® | inear regression predict the value Y;
® |ogistic regression predict the probability P(Y; = 1)
® Generalized linear models:
» family = distribution + link function
» E.g., Binomial + logit for logistic regression
» For Y; € {0,1}, actually Bernoulli + logit [Binary logistic regression]
® Since distribution is known, MLE can be adopted for estimating o and :

o, B) = Z lyi log (inv.logit(a + Bx;)) + (1 — yi) log (1 — inv.logit(c + 5x;))]
i=1

See R script
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Penalized /Elastic net logistic regression

® Penalized linear regression minimizes:

ly = X - Bl + X2l 812 + MlIB3

» A1 = 0 is the Ridge penalty
» Ay = 0 is the Lasso penalty

® Flastic net regularization for logistic regression minimizes:

(1-

)47 (B3 181R + alolR)

» o = 0 is the Ridge penalty
» o =1 is the Lasso penalty
» )\ is to be found, e.g., by cross-validation
See R script
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