Statistical Methods for Data Science

Lesson 16 - Multiple, non-linear, and logistic regression.

Salvatore Ruggieri
Department of Computer Science
University of Pisa
salvatore.ruggieri@unipi.it

Simple linear regression model

$$
\begin{aligned}
& \text { Simple Linear regression model. In a simple linear regression } \\
& \text { model for a bivariate dataset }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right) \text {, we as- } \\
& \text { sume that } x_{1}, x_{2}, \ldots, x_{n} \text { are nonrandom and that } y_{1}, y_{2}, \ldots, y_{n} \text { are } \\
& \text { realizations of random variables } Y_{1}, Y_{2}, \ldots, Y_{n} \text { satisfying } \\
& \qquad Y_{i}=\alpha+\beta x_{i}+U_{i} \text { for } i=1,2, \ldots, n, \\
& \text { where } U_{1}, \ldots, U_{n} \text { are independent random variables with } \mathrm{E}\left[U_{i}\right]=0 \\
& \text { and } \operatorname{Var}\left(U_{i}\right)=\sigma^{2} .
\end{aligned}
$$

- Regression line: $y=\alpha+\beta x$ with intercept α and slope β
- Least Square Estimators: $\hat{\alpha}$ and $\hat{\beta}$
- Unbiasedness: $E[\hat{\alpha}]=\alpha$ and $E[\hat{\beta}]=\beta$
- Moreover: $\operatorname{Var}(\hat{\alpha})=\sigma^{2}\left(1 / n+\bar{x}^{2} / S X X\right)$ and $\operatorname{Var}(\hat{\beta})=\sigma^{2} / S X X$
- Standard errors (estimates of $\sqrt{\operatorname{Var}(\hat{\alpha})}$ and $\sqrt{\operatorname{Var}(\hat{\beta})})$:

$$
\operatorname{se}(\hat{\alpha})=\hat{\sigma} \sqrt{\left(\frac{1}{n}+\frac{\bar{x}_{n}^{2}}{S X X}\right)} \quad \operatorname{se}(\hat{\beta})=\frac{\hat{\sigma}}{\sqrt{S X X}}
$$

Standard error of fitted values (predictions)

- For a given x_{0}, the the estimator $\hat{Y}=\hat{\alpha}+\hat{\beta} x_{0}$ has expectation $E[\hat{Y}]=\alpha+\beta x_{0}$
- Hence, $\hat{y}=\alpha+\beta x_{0}$, is the best estimate for the fitted value
- Variance of \hat{Y} is:
[See notes2.pdf]

$$
\operatorname{Var}(\hat{Y})=\sigma^{2}\left(\frac{1}{n}+\frac{\left(\bar{x}_{n}-x_{0}\right)^{2}}{S X X}\right)
$$

- The standard error of the fitted value is then the estimate:

$$
\operatorname{se}(\hat{Y})=\hat{\sigma} \sqrt{\left(\frac{1}{n}+\frac{\left(\bar{x}_{n}-x_{0}\right)^{2}}{S X X}\right)}
$$

where

$$
S X X=\sum_{1}^{n}\left(x_{i}-\bar{x}_{n}\right)^{2} \quad \quad \hat{\sigma}^{2}=\frac{1}{n-2} \sum_{1}^{n}\left(y_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)^{2}
$$

See R script

Weighted Least Squares and simple polynomial regression

- Weighted Simple Regression

$$
S(\alpha, \beta)=\sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2} w_{i}
$$

- w_{i} is the weight (or importance) of observation $\left(x_{i}, y_{i}\right)$
- For integer weights, it is the same as replicating instances
- Polynomial Simple Regression

$$
S(\alpha, \beta)=\sum_{i=1}^{n}\left(y_{i}-\alpha-\beta_{1} x_{i}-\beta_{2} x_{i}^{2}-\ldots-\beta_{k} x_{i}^{k}\right)^{2}
$$

- $Y_{i}=\alpha+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\ldots+\beta_{k} x_{i}^{k}+U_{i}$ for $i=1,2, \ldots, n$

See R script

Non-linear regression and transformably linear functions

- Non-linear Simple Regression, for a generic function $f()$
- $Y_{i}=f\left(\alpha, \beta, x_{i}\right)+U_{i}$ for $i=1,2, \ldots, n$

$$
S(\alpha, \beta)=\sum_{i=1}^{n}\left(y_{i}-f\left(\alpha, \beta, x_{i}\right)\right)^{2}
$$

- $\min S(\alpha, \beta)$ maybe without a closed form
- use numeric search of the minimum (which may fail to find!), e.g., gradient descent
- Idea: $y_{i}-f\left(\alpha, \beta+\delta, x_{i}\right) \approx y-f\left(\alpha, \beta, x_{i}\right)+\frac{d}{d \beta} f\left(\alpha, \delta, x_{i}\right)$
- Some $f()$ can be favourably transformed, e.g., $f\left(\alpha, \beta, x_{i}\right)=\alpha x_{i}^{\beta} \quad$ [Linearization]
- Solve $\log Y_{i}=\log \alpha+\log \beta x_{i}+U_{i}$ and then by exponentiation:

$$
Y_{i}=\alpha x_{i}^{\beta} e^{U_{i}}
$$

where the error term is a multiplicative factor (must be checked with residual analysis)

Multiple linear regression

- Multivariate dataset:

$$
\left(x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{k}, y_{1}\right), \ldots,\left(x_{n}^{1}, x_{n}^{2}, \ldots, x_{n}^{k}, y_{n}\right)
$$

- $Y_{i}=\alpha+\beta_{1} x_{i}^{1}+\ldots+\beta_{k} x_{i}^{k}+U_{i}$
- In vector terms:
- $Y_{i}=\boldsymbol{x}_{i} \cdot \boldsymbol{\beta}+U_{i}$, where $\boldsymbol{\beta}^{T}=\left(\alpha, \beta_{1}, \ldots, \beta_{k}\right)$ and $\boldsymbol{x}_{i}=\left(x_{i}^{1}, \ldots, x_{i}^{k}\right)$
- $\boldsymbol{Y}=\boldsymbol{X} \cdot \boldsymbol{\beta}+\boldsymbol{U}$, where $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right), \boldsymbol{U}=\left(U_{1}, \ldots, U_{n}\right)$, and $\boldsymbol{X}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$
- Ordinary Least Square Estimation (OLS):

$$
S(\boldsymbol{\beta})=\sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}_{i} \cdot \boldsymbol{\beta}\right)^{2}=\|\boldsymbol{y}-\boldsymbol{X} \cdot \boldsymbol{\beta}\|^{2} \quad \hat{\boldsymbol{\beta}}=\operatorname{argmin}_{\boldsymbol{\beta}} S(\boldsymbol{\beta})=\left(\boldsymbol{X}^{T} \cdot \boldsymbol{X}\right)^{-1} \cdot \boldsymbol{X}^{T} \cdot \boldsymbol{y}
$$

where $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ and $\left\|\left(v_{1}, \ldots, v_{n}\right)\right\|=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}$ is the Euclidian norm

- Meaning of β_{i} : change of Y due to a unit change in x_{i} all the x_{j} with $j \neq i$ unchanged!
- It is the best (ie., smallest MSE) linear unbiased estimator
[Gauss-Markov Thm.]

Omitted variable bias

- $Y_{i}=\alpha+\beta x_{i}+U_{i}$
- Assume there exists a third (unknown) variable Z such that:
- X and Z are correlated
- Y is determined by Z
- $Y_{i}=\alpha+\beta_{1} x_{i}+\beta_{2} z_{i}+U_{i}^{\prime}$ but we do not know z_{i} 's
- $E\left[U_{i}\right]=E\left[\beta_{2} z_{i}+U_{i}^{\prime}\right]=\beta_{2} z_{i}+E\left[U_{i}^{\prime}\right]=\beta_{2} z_{i} \neq 0$
- The problem cannot be solved by increasing the number of observations!

See R script

Multi-collinearity and variance inflation factors

- Multicollinearity: two or more independent variables (regressors) are strongly correlated.
- $Y_{i}=\alpha+\beta_{1} x_{i}^{1}+\beta_{2} x_{i}^{2}+U_{i}$
- It can be shown that for $j \in\{1,2\}$:

$$
\operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{1}{\left(1-r^{2}\right)} \cdot \frac{\sigma^{2}}{S X X_{j}}
$$

where $r=\operatorname{cor}\left(x^{1}, x^{2}\right), \sigma^{2}=\operatorname{Var}\left(U_{i}\right)$ and $S X X_{j}=\sum_{1}^{n}\left(x_{i}^{j}-\bar{x}_{n}\right)^{2}$

- Correlation between regressors increases the variance of the estimators
- In general, for more than 2 variables:

$$
\operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{1}{\left(1-R_{j}^{2}\right)} \cdot \frac{\sigma^{2}}{S X X_{j}}
$$

where R_{j}^{2} is the coefficient of determination $\left(R^{2}\right)$ in the regression of x_{j} from all other x_{i} 's.

- The term $1 /\left(1-R_{j}^{2}\right)$ is called variance inflation factor See R script

Variable selection

- Recall: when $U_{i} \sim N\left(0, \sigma^{2}\right)$, we have $Y_{i} \sim N\left(\boldsymbol{x}_{i} \cdot \boldsymbol{\beta}, \sigma^{2}\right)$, hence we can apply MLE
- Log-likelihood is $\ell(\boldsymbol{\beta})=\sum_{i=1}^{n} \log \left(\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{y_{i}-x_{i} ; \beta}{\sigma^{2}}\right)^{2}}\right)$
- Akaike information criterion (AIC), balances model fit against model simplicity

$$
A I C(\boldsymbol{\beta})=2|\boldsymbol{\beta}|-2 \ell(\boldsymbol{\beta})
$$

- stepAIC(model, direction=" backward") algorithm

1. $S=\left\{x^{1}, \ldots, x^{k}\right\}$
2. $b=A I C(S)$
3. repeat
$3.1 x=\operatorname{argmin}_{x \in S} \operatorname{AIC}(S \backslash\{x\})$
$3.2 v=\operatorname{AIC}(S \backslash\{x\})$
3.3 if $v<b$ then $S, b=S \backslash\{x\}, v$
4. until no change in S
5. return S

Regularization methods

$$
\hat{\boldsymbol{\beta}}=\operatorname{argmin}_{\boldsymbol{\beta}} S(\boldsymbol{\beta})
$$

- Ordinary Least Square Estimation (OLS):

$$
S(\boldsymbol{\beta})=\|\boldsymbol{y}-\boldsymbol{X} \cdot \boldsymbol{\beta}\|^{2}
$$

where $\left\|\left(v_{1}, \ldots, v_{n}\right)\right\|=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}$ is the Euclidian norm

- Ridge regression:

$$
S(\boldsymbol{\beta})=\|\boldsymbol{y}-\boldsymbol{X} \cdot \boldsymbol{\beta}\|^{2}+\lambda_{2}\|\boldsymbol{\beta}\|^{2}
$$

where $\|\boldsymbol{\beta}\|^{2}=\alpha^{2}+\sum_{i=1}^{k} \beta_{i}^{2}$.

- Notice that λ_{2} is not in the parameters of the minimization problem!
- Variables with minor contribution have their coefficients close to zero
- It improves prediction error by reducing overfitting through a bias-variance trade-off
- It is not a parsimonious method, i.e., does not reduce features

Regularization methods

- Lasso (least absolute shrinkage and selection operator) regression:

$$
S(\boldsymbol{\beta})=\|\boldsymbol{y}-\boldsymbol{X} \cdot \boldsymbol{\beta}\|^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}^{2}
$$

where $\|\boldsymbol{\beta}\|_{1}^{2}=|\alpha|+\sum_{i=1}^{k}\left|\beta_{i}\right|$.

- Notice that λ_{1} is not in the parameters of the minimization problem!
- Variable with minor contribution have their coefficients equal to zero
- It improves prediction error by reducing overfitting through a bias-variance trade-off
- It is a parsimonious method, i.e., does reduce features
- Penalized linear regression:

$$
S(\boldsymbol{\beta})=\|\boldsymbol{y}-\boldsymbol{X} \cdot \boldsymbol{\beta}\|^{2}+\lambda_{2}\|\boldsymbol{\beta}\|^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}^{2}
$$

- Both Ridge and Lasso regularization parameters
- How to solve the minimization problems? Lagrange multiplier method or reduction to Support Vector Machine learning
- How to find the best λ_{1} and/or λ_{2} ? Cross-validation!

Multivariate linear regression

- The multivariate linear model accommodates two or more dependent variables

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{U}
$$

where

- \boldsymbol{Y} is $n \times m: n$ observations, m dependent variables
- \boldsymbol{X} is $n \times(k+1)$: n observations, k dependent variables +1 constants
- $\boldsymbol{\beta}$ is $(k+1) \times m$: k parameters $\beta+1$ parameter α for each of the m dependent variables
- U is $n \times m$: n observations, m error terms
- It is not just a collection of m multiple linear regressions
- Errors in rows (observations) of \boldsymbol{U} are independent, as in a single multiple linear regression
- Errors in columns (dependent variables) are allowed to be correlated.
- E.g., errors of plasma level and amitriptyline due to usage of drugs
- Hence, coefficients from the models covary! More later on confidence intervals for coefficients See R script

Towards logistic regression

- Consider a bivariate dataset

$$
\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

where $\boldsymbol{y}_{\boldsymbol{i}} \in\{0,1\}$, i.e., Y_{i} i binary variable

- Using directly use linear regression:

$$
Y_{i}=\alpha+\beta x_{i}+U_{i}
$$

results in poor performances $\left(R^{2}\right)$

Towards logistic regression

- Consider a bivariate dataset

$$
\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

where $\boldsymbol{y}_{\boldsymbol{i}} \in\{0,1\}$, i.e., Y_{i} i binary variable

- Group by x values:

$$
\left(d_{1}, f_{1}\right), \ldots,\left(d_{m}, f_{m}\right)
$$

where d_{1}, \ldots, d_{m} are the distinct values of x_{1}, \ldots, x_{n} and f_{i} is the fraction of 1 's:

$$
f_{i}=\frac{\left|\left\{j \in[1, n] \mid x_{j}=d_{i} \wedge y_{j}=1\right\}\right|}{\left|\left\{j \in[1, n] \mid x_{j}=d_{i}\right\}\right|}
$$

and the linear model:

$$
F_{i}=\alpha+\beta x_{i}+U_{i}
$$

See R script

Towards logistic regression

- Rather than f_{i}, we model the logit of f_{i}

$$
\operatorname{logit}\left(F_{i}\right)=\alpha+\beta x_{i}+U_{i}
$$

where logit and its inverse (logistic function) are:

$$
\operatorname{logit}(p)=\log \frac{p}{1-p} \quad \text { inv.logit }(x)=\frac{e^{x}}{1+e^{x}}
$$

See R script

Logistic regression and generalized linear models

- Since Y_{i} 's are binary, $F_{i}=P\left(Y_{i}=1 \mid X=x_{i}\right) \sim \operatorname{Ber}\left(f_{i}\right)$, and U_{i} is not necessary

$$
\operatorname{logit}\left(F_{i}\right)=\alpha+\beta x_{i}
$$

and then $F_{i}=P\left(Y_{i}=1 \mid X=x_{i}\right)=i n v \cdot \operatorname{logit}\left(\alpha+\beta x_{i}\right)=\frac{e^{\alpha+\beta x_{i}}}{1+e^{\alpha+\beta x_{i}}}$

- Linear regression predict the value Y_{i}
- Logistic regression predict the probability $P\left(Y_{i}=1\right)$
- Generalized linear models:
- family $=$ distribution + link function
- E.g., Binomial + logit for logistic regression
- For $Y_{i} \in\{0,1\}$, actually Bernoulli + logit
[Binary logistic regression]
- Since distribution is known, MLE can be adopted for estimating α and β :

$$
\ell(\alpha, \beta)=\sum_{i=1}^{n}\left[y_{i} \log \left(i n v \cdot \operatorname{logit}\left(\alpha+\beta x_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-i n v \cdot \operatorname{logit}\left(\alpha+\beta x_{i}\right)\right)\right]
$$

Penalized/Elastic net logistic regression

- Penalized linear regression minimizes:

$$
\|\boldsymbol{y}-\boldsymbol{X} \cdot \boldsymbol{\beta}\|^{2}+\lambda_{2}\|\boldsymbol{\beta}\|^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}^{2}
$$

- $\lambda_{1}=0$ is the Ridge penalty
- $\lambda_{2}=0$ is the Lasso penalty
- Elastic net regularization for logistic regression minimizes:

$$
-\ell(\boldsymbol{\beta})+\lambda\left(\frac{(1-\alpha)}{2}\|\boldsymbol{\beta}\|^{2}+\alpha\|\boldsymbol{\beta}\|_{1}^{2}\right)
$$

- $\alpha=0$ is the Ridge penalty
- $\alpha=1$ is the Lasso penalty
- λ is to be found, e.g., by cross-validation
See R script

