Statistical Methods for Data Science

Lesson 22 - Multiple comparisons. Fitting distributions.

Salvatore Ruggieri
Department of Computer Science
University of Pisa
salvatore.ruggieri@unipi.it

Critical values and p-values

Sampling distribution of T under H_{0}

- Critical region K : the set of values that reject H_{0} in favor of H_{1} at significance level α
- Critical values: values on the boundary of the critical region
- p-value: the probability of obtaining test results at least as extreme as the results actually observed, under the assumption that H_{0} is true
- $t \in K$ iff p-value $\leq \alpha$

Misues of p-values

Misinterpretations of p-values, Greenland et al., 2016

- The p value is the probability that the null hypothesis is true, or the probability that the alternative hypothesis is false. A p-value indicates the degree of compatibility between a dataset and a particular hypothetical explanation
- The 0.05 significance level is the one to be used: No, it is merely a convention. There is no reason to consider results on opposite sides of any threshold as qualitatively different.
- A large p value is evidence in favor of the test hypothesis: A p-value cannot be said to favor the test hypothesis except in relation to those hypotheses with smaller p-values
- If you reject the test hypothesis because $p \leq 0.05$, the chance you are in error is 5% : No, the chance is either 100% or 0%. The 5% refers only to how often you would reject it, and therefore be in error.

s-values

However, vastly different differences in corresponding S-values (9.97 bits vs. <0.15 bits)
More information against the test model

- Shannon information value or surprisal value (s-value) is $-\log _{2} p$
- $p=0.05 \Rightarrow s=4.3$ - no more surprising than getting all heads on 4 fair coin tosses.
- $p=0.005 \Rightarrow p=7.64$ - no more surprising than getting all heads on 8 fair coin tosses.

The multiple comparisons problem

- Single test $H_{0}: \theta=v$, with significance level $\alpha=0.05$
- test is called significant when we reject H_{0}
- α is Type I error, probability of rejecting H_{0} when it is true
- Multiple tests, say $m=20$
- E.g., $H_{0}^{i}: \theta_{i}=0$ for $i=1, \ldots, m$ where θ_{i} is the expectation of a subpopulation
- What is the probability of rejecting at least one H_{0}^{i} when all of them are true?

$$
P(\text { at least one reject })=P\left(\cup_{i=1}^{m}\left\{p_{i} \leq \alpha\right\}\right)=1-P\left(\cap_{i=1}^{m}\left\{p_{i}>\alpha\right\}\right)=1-(1-\alpha)^{m}
$$

and then $1-(0.95)^{20} \approx 0.64$

Family-wise error rate (FWER)

The FWER is the probability of making at least one Type I error in a family of n tests. If the tests are independent:

$$
\alpha_{F W E R}=1-(1-\alpha)^{m}
$$

If the test are dependent: $\alpha_{\text {FWER }} \leq m \cdot \alpha$

Multiple comparisons: corrections

- Bonferroni correction (most conservative one):

$$
\alpha=\frac{\alpha_{F W E R}}{m}
$$

Hence, $p<\alpha$ iff $p \cdot m<\alpha_{F W E R}$

- Šidák correction (exact for independent tests):

$$
\alpha=1-\left(1-\alpha_{F W E R}\right)^{1 / m}
$$

Hence, $p<\alpha$ iff $1-(1-p)^{m}<\alpha_{F W E R}$

> See R script

False Discovery Rate and q-values

- False Positive Rate: $F P R=F P /(F P+T N)$
- Corrections control for $F P R$ since $F W E R=P\left(F P>0 \mid H_{0}^{i} i=1, \ldots, m\right)$
- Drawback: acting on α increases $F N R=F N /(F N+T P)$
- False Discovery Rate: $F D R=F P /(F P+T P)$
- $F D R=0.05$ means 5% of rejected H_{0} 's are actually true
- q-value is $P\left(H_{0} \mid T \geq t\right)$

$$
\left[p=P\left(T \geq t \mid H_{0}\right)\right]
$$

- $F D R$ can be controlled by requiring $q \leq$ threshold

Distribution fitting

- Dataset x_{1}, \ldots, x_{n} realization of $X_{1}, \ldots, X_{n} \sim F$
- What is a plausible F ?
- Parametric approaches:
- Assume $F=F(\lambda)$ for some family F, and estimate λ as $\hat{\lambda}$
\square Maximum Likelihood Estimation (point estimate):

$$
\hat{\lambda}=\operatorname{argmax}_{\lambda} L(\lambda)
$$

\square Parametric bootstrap (p-value):

$$
T_{k s}=\sup _{a \in \mathbb{R}}\left|F_{n}^{*}(a)-F_{\hat{\lambda}^{*}}(a)\right|
$$

- Non-parametric approaches:
- Empirical distribution
- Kernel Density Estimation
- Goodness of fit: how good is F in fitting the data?

Goodness of fit

- Loss functions (to be minimized)
- Akaike information criterion (AIC), balances model fit against model simplicity

$$
A I C(F(\lambda))=2|\lambda|-2 \ell(\lambda)
$$

- Bayesian information criterion (BIC), stronger balances over model simplicity

$$
B I C(F(\lambda))=|\lambda| \log n-2 \ell(\lambda)
$$

- Statistics (continuous data):
- KS test $H_{0}: X \sim F \quad H_{1}: X \nsim F$ with Kolmogorov-Smirnov (KS) statistic:

$$
D=\sup _{a \in \mathbb{R}}\left|F_{n}(a)-F_{\lambda}(a)\right| \sim K
$$

- LR test $H_{0}: X \sim F_{1} \quad H_{1}: X \sim F_{2}$ with the likelihood-ratio test:

$$
\lambda_{L R}=\log \frac{L\left(F_{1}\left(\lambda_{1}\right)\right)}{L\left(F_{2}\left(\lambda_{2}\right)\right)}=\ell\left(F_{1}\left(\lambda_{1}\right)\right)-\ell\left(F_{2}\left(\lambda_{2}\right)\right) \quad \text { with }-2 \lambda_{L R} \sim \chi^{2}
$$

See R script

Goodness of fit

Chi-square distribution

The Chi-square distribution with k degrees of freedom $\chi^{2}(k)$ has density:

$$
f(x)=\frac{1}{2^{k / 2} \Gamma(k / 2)} x^{k / 2-1} e^{-x / 2}
$$

$$
\text { Let } X_{1}, \ldots, X_{k} \sim N(0,1) \text {. Then } Y=\sum_{i=1}^{k} X_{i}^{2} \sim \chi^{2}(k)
$$

- Statistics (discrete data):
- Pearson's Chi-Square test $H_{0}: X \sim F(\gamma) \quad H_{1}: X \nsim F(\gamma)$ with χ^{2} statistic:

$$
\chi^{2}=\sum_{N_{i}>0 \vee n_{i}>0} \frac{\left(N_{i}-n_{i}\right)^{2}}{n_{i}}=n \cdot \sum_{N_{i}>0 \vee p(i)>0} \frac{\left(N_{i} / n-p(i)\right)^{2}}{p(i)} \sim \chi^{2}(d f)
$$

where N_{i} number of observations of value $i, n_{i}=n \cdot p(i)$ expected number of observations, and $d f=\left|\left\{i \mid N_{i}>0\right\}\right|-|\gamma|$ is the number of observed values minus the number of estimated parameters. $\chi^{2}=\infty$ if for some $i: n_{i}=0$ and $N_{i}>0$

Common distributions

Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986).

Comparing two datasets

- Dataset x_{1}, \ldots, x_{n} realization of $X_{1}, \ldots, X_{n} \sim F_{1}$
- Dataset y_{1}, \ldots, y_{m} realization of $Y_{1}, \ldots, Y_{n} \sim F_{2}$
- $H_{0}: F_{1}=F_{2} \quad H_{1}: F_{1} \neq F_{2}$
- Continuous data: KS statistics

$$
D=\sup _{a \in \mathbb{R}}\left|F_{1}(a)-F_{2}(a)\right| \sim K
$$

- Discrete data: χ^{2} statistics

$$
\chi^{2}=\sum_{R_{i}>0 \vee S_{i}>0} \frac{\left(\sqrt{\frac{m}{n}} R_{i}-\sqrt{\frac{n}{m}} S_{i}\right)^{2}}{R_{i}+S_{i}} \sim \chi^{2}(d f)
$$

where R_{i} (resp., S_{i}) is the number of observations in x_{1}, \ldots, x_{n} (resp., y_{1}, \ldots, y_{m}) of value $i, d f=\left|\left\{i \mid R_{i}>0 \vee S_{i}>0\right\}\right|-1$

