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Critical values and p-values

• Critical region K : the set of values that reject H0 in favor of H1 at significance level α
• Critical values: values on the boundary of the critical region
• p-value: the probability of obtaining test results at least as extreme as the results actually

observed, under the assumption that H0 is true
• t ∈ K iff p-value ≤ α
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Misues of p-values

Misinterpretations of p-values, Greenland et al., 2016

• The p-value is the probability that the null hypothesis is true, or the probability that the
alternative hypothesis is false. A p-value indicates the degree of compatibility between a
dataset and a particular hypothetical explanation

• The 0.05 significance level is the one to be used: No, it is merely a convention. There is
no reason to consider results on opposite sides of any threshold as qualitatively different.

• A large p-value is evidence in favor of the test hypothesis: A p-value cannot be said to
favor the test hypothesis except in relation to those hypotheses with smaller p-values

• If you reject the test hypothesis because p ≤ 0.05, the chance you are in error is 5%: No,
the chance is either 100% or 0%. The 5% refers only to how often you would reject it,
and therefore be in error.
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s-values

• Shannon information value or surprisal value (s-value) is − log2 p
• p = 0.05⇒ s = 4.3 - no more surprising than getting all heads on 4 fair coin tosses.
• p = 0.005⇒ p = 7.64 - no more surprising than getting all heads on 8 fair coin tosses.
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The multiple comparisons problem
• Single test H0 : θ = 0, with significance level α = 0.05 [false positive rate]

I test is called significant when we rejectH0

I α is Type I error, probability of rejecting H0 when it is true
• Multiple tests, say m = 20

I E.g., H i
0 : θi = 0 for i = 1, . . . ,m where θi is the expectation of a subpopulation

• What is the probability of rejecting at least one H i
0 when all of them are true?

P(at least one reject) = P(∪mi=1{pi ≤ α}) = 1− P(∩mi=1{pi > α}) = 1− (1− α)m

and then 1− (0.95)20 ≈ 0.64

Family-wise error rate (FWER)

The FWER is the probability of making at least one Type I error in a
family of n tests. If the tests are independent:

αFWER = 1− (1− α)m

If the test are dependent: αFWER ≤ m · α
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Multiple comparisons: corrections

• Bonferroni correction (most conservative one):

α =
αFWER

m

Hence, p < α iff p ·m < αFWER

• Šidák correction (exact for independent tests):

α = 1− (1− αFWER)
1/m

Hence, p < α iff 1− (1− p)m < αFWER

See R script
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False Discovery Rate and q-values

• False Positive Rate: FPR = FP/(FP + TN)
I Corrections control for FPR since FWER = P(FP > 0|H i

0 i = 1, . . . ,m)

• Drawback: acting on α increases FNR = FN/(FN + TP)
• False Discovery Rate: FDR = FP/(FP + TP)

I FDR = 0.05 means 5% of rejected H0’s are actually true
• q-value is P(H0|T ≥ t) [p = P(T ≥ t|H0)]

I FDR can be controlled by requiring q ≤ threshold
See R script
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Distribution fitting

• Dataset x1, . . . , xn realization of X1, . . . ,Xn ∼ F

• What is a plausible F?
• Parametric approaches:

I Assume F = F (λ) for some family F , and estimate λ as λ̂
� Maximum Likelihood Estimation (point estimate):

λ̂ = argmaxλL(λ)

� Parametric bootstrap (p-value):

Tks = sup
a∈R
|F ∗n (a)− FΛ̂∗(a)|

• Non-parametric approaches:
I Empirical distribution
I Kernel Density Estimation

• Goodness of fit: how good is F in fitting the data?
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Goodness of fit

• Loss functions (to be minimized)
I Akaike information criterion (AIC), balances model fit against model simplicity

AIC (F (λ)) = 2|λ| − 2`(λ)

I Bayesian information criterion (BIC), stronger balances over model simplicity

BIC (F (λ)) = |λ| log n − 2`(λ)

• Statistics (continuous data):
I KS test H0 : X ∼ F H1 : X 6∼ F with Kolmogorov-Smirnov (KS) statistic:

D = sup
a∈R
|Fn(a)− F (a)| ∼ K

I LR test H0 : X ∼ F1 H1 : X ∼ F2 with the likelihood-ratio test:

λLR = log
L(F1(λ1))

L(F2(λ2))
= `(F1(λ1))− `(F2(λ2)) with − 2λLR ∼ χ2

See R script
9 / 12
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Goodness of fit

Chi-square distribution

The Chi-square distribution with k degrees of freedom χ2(k) has density:

f (x) =
1

2k/2Γ(k/2)
x

k/2−1e−x/2

Let X1, . . . ,Xk ∼ N(0, 1). Then Y =
∑k

i=1 X
2
i ∼ χ2(k)

• Statistics (discrete data):
I Pearson’s Chi-Square test H0 : X ∼ F (γ) H1 : X 6∼ F (γ) with χ2 statistic:

χ2 =
∑

Ni>0∨ni>0

(Ni − ni )
2

ni
= n ·

∑
Ni>0∨p(i)>0

(Ni/n − p(i))2

p(i)
∼ χ2(df )

where Ni number of observations of value i , ni = n · p(i) expected number of observations,
and df = |{i | Ni > 0}| − |γ| is the number of observed values minus the number of
estimated parameters. χ2 =∞ if for some i : ni = 0 and Ni > 0

See R script
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https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test


Common distributions
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Comparing two datasets

• Dataset x1, . . . , xn realization of X1, . . . ,Xn ∼ F1

• Dataset y1, . . . , ym realization of Y1, . . . ,Yn ∼ F2

• H0 : F1 = F2 H1 : F1 6= F2

• Continuous data: KS statistics

D = sup
a∈R
|F1(a)− F2(a)| ∼ K

• Discrete data: χ2 statistics

χ2 =
∑

Ri>0∨Si>0

(
√

m
n Ri −

√
n
mSi )

2

Ri + Si
∼ χ2(df )

where Ri (resp., Si ) is the number of observations in x1, . . . , xn (resp., y1, . . . , ym) of
value i , df = |{i |Ri > 0 ∨ Si > 0}| − 1

See R script
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