
Forward and backward pass in a neural network

Andrea Esuli

September 3, 2020

This is a step by step example of performing the forward and backward pass on
a neural network.

Network

We will work with a simple two-layers network.

Figure 1: Network and flow of computation

First layer, two neurons with bias, ReLU activation (ReLU(x) = max(0, x)).

W0 =

[
w000 w001 w002

w010 w011 w012

]
=

[
0.2 −1.2 0.9
−0.5 −1.2 0.3

]
(1)

bhid =

[
b00
b01

]
=

[
−0.1
0.2

]
(2)

Second layer (output layer), one neuron with bias, sigmoid activation (σ(x) =
1

1+e−x ).

Wout =
[
w100 w101

]
=
[
0.8 −1.1

]
(3)

bout = b10 = −0.1 (4)

1



Data

Training example, input vector and expected output.

x =

0.9
0.2
0.5

 (5)

y = 0 (6)

Forward pass

Passing input through first layer.

hpre = Whidx+ bhid =

[
0.39
−0.54

]
+

[
−0.1
0.2

]
=

[
0.29
−0.34

]
(7)

h = relu(hpre) =

[
0.29

0

]
(8)

Passing the output of first layer through the second layer.

opre = Wouth+ bout = 0.203 − 0.1 = 0.103 (9)

o = σ(opre) =
1

1 + e−0.103
= 0.526 (10)

Output o is > 0.5 so the prediction would be ŷ = 1.
Computing loss.

loss = E =
1

2

∑
i

(yi − oi)
2 =

1

2
(0 − 0.526)2 = 0.138 (11)

Backpropagation

Computing the partial derivative (gradient) of error with respect to weights
(including biases) of the network. Example for w100.
Applying the chain rule.

∂E

∂w100
=
∂E

∂o
· ∂o

∂opre
· ∂opre
∂w100

(12)

∂E

∂o
= 2

1

2
(y − o)2−1 · −1 = −(y − o) = o− y = 0.526 (13)

∂o

∂opre
=
∂σ(opre)

∂opre
= σ(opre)(1 − σ(opre)) = 0.526(1 − 0.526) = 0.249 (14)

2



∂opre
∂w100

=
∂w100h0 + w101h1 + b10

∂w100
= h0 = 0.29 (15)

∂E

∂w100
= 0.526 · 0.249 · 0.29 = 0.038 (16)

Learning rate is a parameter of the training process.
This is a very high learning rate, select to make the correction based on a single
example more evident.

µ = 0.1 (17)

Weight is changed by combining gradient and learning rate so as to reduce error.

w∗
100 = w100 − µ

∂E

∂w100
= 0.7 − 0.1 · 0.038 = 0.696 (18)

Partial derivatives can be reused to compute correction for the other weights in
the same layer.

∂E

∂w101
=
∂E

∂o
· ∂o

∂opre
· ∂opre
∂w101

= 0.526 · 0.249 · 0 = 0 (19)

Gradient for w101 is zero because ReLU of first layer gave h1 = 0. Weight does
not change.

w∗
101 = w101 − µ

∂E

∂w101
= −1.1 − 0.1 · 0 = −1.1 (20)

Bias bout changes in the same way of weights, as it is just a weight with constant
input equal to one.

∂E

∂b10
=
∂E

∂o
· ∂o

∂opre
· ∂opre
∂b10

= 0.526 · 0.249 · 1 = 0.131 (21)

b∗10 = b10 − µ
∂E

∂b10
= −0.1 − 0.1 · 0.131 = −0.113 (22)

We compute hidden layer gradients, using chain rule.

∂E

∂w000
=
∂E

∂h0
· ∂h0
∂hpre,0

· ∂hpre,0
∂w000

(23)

We can reuse gradients from output layers.

∂E

∂h0
=
∂E

∂o
· ∂o

∂opre
· ∂opre
∂h0

= 0.526 ·0.249 ·w100 = 0.526 ·0.249 ·0.7 = 0.092 (24)

ReLU derivative on non-negative values is 1.

∂h0
∂hpre,0

= 1 (25)

∂hpre,0
∂w000

= x0 = 0.9 (26)

∂E

∂w000
= 0.092 · 1 · 0.9 = 0.082 (27)

3



Weight update.

w∗
000 = w000 − µ

∂E

∂w000
= 0.2 − 0.1 · 0.082 = 0.191 (28)

Same goes for all other weights and biases for the first layer.
Note that:

∂E

∂h1
=
∂E

∂o
· ∂o

∂opre
·∂opre
∂h1

= 0.526·0.249·w101 = 0.526·0.249·−1.1 = −0.144 (29)

Let’s compute all remaining gradients.

∂E

∂w001
=

∂E

∂h0
· ∂h0
∂hpre,0

· ∂hpre, 0
∂w001

= 0.092 · 1 · 0.2 = 0.018 (30)

∂E

∂w002
=

∂E

∂h0
· ∂h0
∂hpre,0

· ∂hpre, 0
∂w002

= 0.092 · 1 · 0.5 = 0.046 (31)

∂E

∂w010
=

∂E

∂h1
· ∂h1
∂hpre,1

· ∂hpre, 1
∂w010

= −0.144 · 0 · 0.9 = 0 (32)

∂E

∂w011
=

∂E

∂h1
· ∂h1
∂hpre,1

· ∂hpre, 1
∂w011

= −0.144 · 0 · 0.2 = 0 (33)

∂E

∂w012
=

∂E

∂h1
· ∂h1
∂hpre,1

· ∂hpre, 1
∂w012

= −0.144 · 0 · 0.5 = 0 (34)

∂E

∂b00
=

∂E

∂h0
· ∂h0
∂hpre,0

· ∂hpre, 0
∂b00

= 0.092 · 1 · 1 = 0.092 (35)

∂E

∂b01
=

∂E

∂h1
· ∂h1
∂hpre,1

· ∂hpre, 1
∂b01

= −0.144 · 0 · 1 = 0 (36)

Update of weights and biases.

w∗
001 = w001 − µ

∂E

∂w001
= −1.2 − 0.1 · 0.018 = −1.202 (37)

w∗
002 = w002 − µ

∂E

∂w002
= 0.9 − 0.1 · 0.046 = 0.895 (38)

w∗
010 = w010 − µ

∂E

∂w010
= −0.5 − 0.1 · 0 = −0.5 (39)

w∗
011 = w011 − µ

∂E

∂w011
= −1.2 − 0.1 · 0 = −1.2 (40)

w∗
012 = w012 − µ

∂E

∂w012
= 0.3 − 0.1 · 0 = 0.3 (41)

b∗00 = b00 − µ
∂E

∂b00
= −0.1 − 0.1 · 0.092 = −0.109 (42)

b∗01 = b01 − µ
∂E

∂b01
= 0.2 − 0.1 · 0 = 0.2 (43)

We have made small corrections. Is there a reduction in error?

4



Lets’ repeat the forward pass.

h∗pre = W ∗
hidx+ b∗hid =

[
0.379
−0.54

]
+

[
−0.109

0.2

]
=

[
0.27
−0.34

]
(44)

h∗ = relu(h∗pre) =

[
0.27

0

]
(45)

o∗pre = W ∗
outh

∗ + b∗out = 0.188 − 0.113 = 0.075 (46)

o∗ = σ(o∗pre) =
1

1 + e−0.075
= 0.518 (47)

loss∗ = E∗ =
1

2

∑
i

(yi − o∗i )2 =
1

2
(0 − 0.518)2 = 0.134 (48)

Yes, we moved our prediction a bit closer to the correct one and we reduced the
error.
Repeating these steps more times (and with more examples) will properly fit
the network.

5


