Forward and backward pass in a neural network

Andrea Esuli

September 3, 2020

This is a step by step example of performing the forward and backward pass on a neural network.

Network

We will work with a simple two-layers network.

Figure 1: Network and flow of computation
First layer, two neurons with bias, ReLU activation $(\operatorname{ReLU}(x)=\max (0, x))$.

$$
\begin{gather*}
W_{0}=\left[\begin{array}{lll}
w_{000} & w_{001} & w_{002} \\
w_{010} & w_{011} & w_{012}
\end{array}\right]=\left[\begin{array}{ccc}
0.2 & -1.2 & 0.9 \\
-0.5 & -1.2 & 0.3
\end{array}\right] \tag{1}\\
b_{\text {hid }}=\left[\begin{array}{l}
b_{00} \\
b_{01}
\end{array}\right]=\left[\begin{array}{c}
-0.1 \\
0.2
\end{array}\right] \tag{2}
\end{gather*}
$$

Second layer (output layer), one neuron with bias, sigmoid activation $(\sigma(x)=$ $\left.\frac{1}{1+e^{-x}}\right)$.

$$
\begin{gather*}
W_{\text {out }}=\left[\begin{array}{ll}
w_{100} & w_{101}
\end{array}\right]=\left[\begin{array}{ll}
0.8 & -1.1
\end{array}\right] \tag{3}\\
b_{\text {out }}=b_{10}=-0.1 \tag{4}
\end{gather*}
$$

Data

Training example, input vector and expected output.

$$
\begin{gather*}
x=\left[\begin{array}{l}
0.9 \\
0.2 \\
0.5
\end{array}\right] \tag{5}\\
y=0 \tag{6}
\end{gather*}
$$

Forward pass

Passing input through first layer.

$$
\begin{gather*}
h_{\text {pre }}=W_{\text {hid }} x+b_{\text {hid }}=\left[\begin{array}{c}
0.39 \\
-0.54
\end{array}\right]+\left[\begin{array}{c}
-0.1 \\
0.2
\end{array}\right]=\left[\begin{array}{c}
0.29 \\
-0.34
\end{array}\right] \tag{7}\\
h=\operatorname{relu}\left(h_{\text {pre }}\right)=\left[\begin{array}{c}
0.29 \\
0
\end{array}\right] \tag{8}
\end{gather*}
$$

Passing the output of first layer through the second layer.

$$
\begin{gather*}
o_{\text {pre }}=W_{\text {out }} h+b_{\text {out }}=0.203-0.1=0.103 \tag{9}\\
o=\sigma\left(o_{\text {pre }}\right)=\frac{1}{1+e^{-0.103}}=0.526 \tag{10}
\end{gather*}
$$

Output o is >0.5 so the prediction would be $\hat{y}=1$.
Computing loss.

$$
\begin{equation*}
\operatorname{loss}=E=\frac{1}{2} \sum_{i}\left(y_{i}-o_{i}\right)^{2}=\frac{1}{2}(0-0.526)^{2}=0.138 \tag{11}
\end{equation*}
$$

Backpropagation

Computing the partial derivative (gradient) of error with respect to weights (including biases) of the network. Example for w_{100}.
Applying the chain rule.

$$
\begin{gather*}
\frac{\partial E}{\partial w_{100}}=\frac{\partial E}{\partial o} \cdot \frac{\partial o}{\partial o_{\text {pre }}} \cdot \frac{\partial o_{\text {pre }}}{\partial w_{100}} \tag{12}\\
\frac{\partial E}{\partial o}=2 \frac{1}{2}(y-o)^{2-1} \cdot-1=-(y-o)=o-y=0.526 \tag{13}\\
\frac{\partial o}{\partial o_{\text {pre }}}=\frac{\partial \sigma\left(o_{\text {pre }}\right)}{\partial o_{\text {pre }}}=\sigma\left(o_{\text {pre }}\right)\left(1-\sigma\left(o_{\text {pre }}\right)\right)=0.526(1-0.526)=0.249 \tag{14}
\end{gather*}
$$

$$
\begin{gather*}
\frac{\partial o_{\text {pre }}}{\partial w_{100}}=\frac{\partial w_{100} h_{0}+w_{101} h_{1}+b 10}{\partial w_{100}}=h_{0}=0.29 \tag{15}\\
\frac{\partial E}{\partial w_{100}}=0.526 \cdot 0.249 \cdot 0.29=0.038 \tag{16}
\end{gather*}
$$

Learning rate is a parameter of the training process.
This is a very high learning rate, select to make the correction based on a single example more evident.

$$
\begin{equation*}
\mu=0.1 \tag{17}
\end{equation*}
$$

Weight is changed by combining gradient and learning rate so as to reduce error.

$$
\begin{equation*}
w_{100}^{*}=w_{100}-\mu \frac{\partial E}{\partial w_{100}}=0.7-0.1 \cdot 0.038=0.696 \tag{18}
\end{equation*}
$$

Partial derivatives can be reused to compute correction for the other weights in the same layer.

$$
\begin{equation*}
\frac{\partial E}{\partial w_{101}}=\frac{\partial E}{\partial o} \cdot \frac{\partial o}{\partial o_{\mathrm{pre}}} \cdot \frac{\partial o_{\mathrm{pre}}}{\partial w_{101}}=0.526 \cdot 0.249 \cdot 0=0 \tag{19}
\end{equation*}
$$

Gradient for w_{101} is zero because ReLU of first layer gave $h_{1}=0$. Weight does not change.

$$
\begin{equation*}
w_{101}^{*}=w_{101}-\mu \frac{\partial E}{\partial w_{101}}=-1.1-0.1 \cdot 0=-1.1 \tag{20}
\end{equation*}
$$

Bias $b_{\text {out }}$ changes in the same way of weights, as it is just a weight with constant input equal to one.

$$
\begin{align*}
\frac{\partial E}{\partial b_{10}} & =\frac{\partial E}{\partial o} \cdot \frac{\partial o}{\partial o_{\mathrm{pre}}} \cdot \frac{\partial o_{\mathrm{pre}}}{\partial b_{10}}=0.526 \cdot 0.249 \cdot 1=0.131 \tag{21}\\
b_{10}^{*} & =b_{10}-\mu \frac{\partial E}{\partial b_{10}}=-0.1-0.1 \cdot 0.131=-0.113 \tag{22}
\end{align*}
$$

We compute hidden layer gradients, using chain rule.

$$
\begin{equation*}
\frac{\partial E}{\partial w_{000}}=\frac{\partial E}{\partial h_{0}} \cdot \frac{\partial h_{0}}{\partial h_{\mathrm{pre}, 0}} \cdot \frac{\partial h_{\mathrm{pre}, 0}}{\partial w_{000}} \tag{23}
\end{equation*}
$$

We can reuse gradients from output layers.

$$
\begin{equation*}
\frac{\partial E}{\partial h_{0}}=\frac{\partial E}{\partial o} \cdot \frac{\partial o}{\partial o_{\mathrm{pre}}} \cdot \frac{\partial o_{\mathrm{pre}}}{\partial h_{0}}=0.526 \cdot 0.249 \cdot w_{100}=0.526 \cdot 0.249 \cdot 0.7=0.092 \tag{24}
\end{equation*}
$$

ReLU derivative on non-negative values is 1 .

$$
\begin{align*}
\frac{\partial h_{0}}{\partial h_{\mathrm{pre}, 0}} & =1 \tag{25}\\
\frac{\partial h_{\mathrm{pre}, 0}}{\partial w_{000}} & =x_{0}=0.9 \tag{26}\\
\frac{\partial E}{\partial w_{000}} & =0.092 \cdot 1 \cdot 0.9=0.082 \tag{27}
\end{align*}
$$

Weight update.

$$
\begin{equation*}
w_{000}^{*}=w_{000}-\mu \frac{\partial E}{\partial w_{000}}=0.2-0.1 \cdot 0.082=0.191 \tag{28}
\end{equation*}
$$

Same goes for all other weights and biases for the first layer.
Note that:

$$
\begin{equation*}
\frac{\partial E}{\partial h_{1}}=\frac{\partial E}{\partial o} \cdot \frac{\partial o}{\partial o_{\text {pre }}} \cdot \frac{\partial o_{\text {pre }}}{\partial h_{1}}=0.526 \cdot 0.249 \cdot w_{101}=0.526 \cdot 0.249 \cdot-1.1=-0.144 \tag{29}
\end{equation*}
$$

Let's compute all remaining gradients.

$$
\begin{align*}
\frac{\partial E}{\partial w_{001}} & =\frac{\partial E}{\partial h_{0}} \cdot \frac{\partial h_{0}}{\partial h_{\text {pre }, 0}} \cdot \frac{\partial h_{\text {pre }}, 0}{\partial w_{001}}=0.092 \cdot 1 \cdot 0.2=0.018 \tag{30}\\
\frac{\partial E}{\partial w_{002}} & =\frac{\partial E}{\partial h_{0}} \cdot \frac{\partial h_{0}}{\partial h_{\text {pre }, 0}} \cdot \frac{\partial h_{\text {pre }, 0}}{\partial w_{002}}=0.092 \cdot 1 \cdot 0.5=0.046 \tag{31}\\
\frac{\partial E}{\partial w_{010}} & =\frac{\partial E}{\partial h_{1}} \cdot \frac{\partial h_{1}}{\partial h_{\text {pre }, 1}} \cdot \frac{\partial h_{\text {pre }}, 1}{\partial w_{010}}=-0.144 \cdot 0 \cdot 0.9=0 \tag{32}\\
\frac{\partial E}{\partial w_{011}} & =\frac{\partial E}{\partial h_{1}} \cdot \frac{\partial h_{1}}{\partial h_{\text {pre }, 1}} \cdot \frac{\partial h_{\text {pre }}, 1}{\partial w_{011}}=-0.144 \cdot 0 \cdot 0.2=0 \tag{33}\\
\frac{\partial E}{\partial w_{012}} & =\frac{\partial E}{\partial h_{1}} \cdot \frac{\partial h_{1}}{\partial h_{\text {pre }, 1}} \cdot \frac{\partial h_{\text {pre }, 1}}{\partial w_{012}}=-0.144 \cdot 0 \cdot 0.5=0 \tag{34}\\
\frac{\partial E}{\partial b_{00}} & =\frac{\partial E}{\partial h_{0}} \cdot \frac{\partial h_{0}}{\partial h_{\text {pre }, 0}} \cdot \frac{\partial h_{\text {pre }}, 0}{\partial b_{00}}=0.092 \cdot 1 \cdot 1=0.092 \tag{35}\\
\frac{\partial E}{\partial b_{01}} & =\frac{\partial E}{\partial h_{1}} \cdot \frac{\partial h_{1}}{\partial h_{\text {pre }, 1}} \cdot \frac{\partial h_{\text {pre }, 1}}{\partial b_{01}}=-0.144 \cdot 0 \cdot 1=0 \tag{36}
\end{align*}
$$

Update of weights and biases.

$$
\begin{align*}
w_{001}^{*} & =w_{001}-\mu \frac{\partial E}{\partial w_{001}}=-1.2-0.1 \cdot 0.018=-1.202 \tag{37}\\
w_{002}^{*} & =w_{002}-\mu \frac{\partial E}{\partial w_{002}}=0.9-0.1 \cdot 0.046=0.895 \tag{38}\\
w_{010}^{*} & =w_{010}-\mu \frac{\partial E}{\partial w_{010}}=-0.5-0.1 \cdot 0=-0.5 \tag{39}\\
w_{011}^{*} & =w_{011}-\mu \frac{\partial E}{\partial w_{011}}=-1.2-0.1 \cdot 0=-1.2 \tag{40}\\
w_{012}^{*} & =w_{012}-\mu \frac{\partial E}{\partial w_{012}}=0.3-0.1 \cdot 0=0.3 \tag{41}\\
b_{00}^{*} & =b_{00}-\mu \frac{\partial E}{\partial b_{00}}=-0.1-0.1 \cdot 0.092=-0.109 \tag{42}\\
b_{01}^{*} & =b_{01}-\mu \frac{\partial E}{\partial b_{01}}=0.2-0.1 \cdot 0=0.2 \tag{43}
\end{align*}
$$

We have made small corrections. Is there a reduction in error?

Lets' repeat the forward pass.

$$
\begin{align*}
h_{\text {pre }}^{*} & =W_{\text {hid }}^{*} x+b_{\text {hid }}^{*}=\left[\begin{array}{c}
0.379 \\
-0.54
\end{array}\right]+\left[\begin{array}{c}
-0.109 \\
0.2
\end{array}\right]=\left[\begin{array}{c}
0.27 \\
-0.34
\end{array}\right] \tag{44}\\
h^{*} & =\operatorname{relu}\left(h_{\text {pre }}^{*}\right)=\left[\begin{array}{c}
0.27 \\
0
\end{array}\right] \tag{45}\\
o_{\text {pre }}^{*} & =W_{\text {out }}^{*} h^{*}+b_{\text {out }}^{*}=0.188-0.113=0.075 \tag{46}\\
o^{*} & =\sigma\left(o_{\text {pre }}^{*}\right)=\frac{1}{1+e^{-0.075}}=0.518 \tag{47}\\
\operatorname{loss}^{*} & =E^{*}=\frac{1}{2} \sum_{i}\left(y_{i}-o_{i}^{*}\right)^{2}=\frac{1}{2}(0-0.518)^{2}=0.134 \tag{48}
\end{align*}
$$

Yes, we moved our prediction a bit closer to the correct one and we reduced the error.
Repeating these steps more times (and with more examples) will properly fit the network.

