Forward and backward pass in a neural network

Andrea Esuli
September 3, 2020

This is a step by step example of performing the forward and backward pass on
a neural network.

Network
We will work with a simple two-layers network.

eample | first layer i niggen | second layer { output and loss

| state !
e |
| o) 0]
H pre v
bl)() hl,pre |

by

| Wooo Woor Woo2

[Woro Woir Worz h
: 0pre

Figure 1: Network and flow of computation

First layer, two neurons with bias, ReL.U activation (ReLU(z) = max(0, z)).

_ wWooo wWoo1 wWoo2 _ 02 —1.2 09 (1)
We10 Woil Wo12 -0.5 —-1.2 0.3

o boo| _ [—0.1
bhia = {bm] = { 0.2 } (2)
Second layer (output layer), one neuron with bias, sigmoid activation (o(x) =

1+i*r)'

Wout = [w100 wio1] = [0.8 —-1.1] (3)
bout = blO =-0.1 (4)

Data

Training example, input vector and expected output.

0.9
x= 102 (5)
0.5
y=0 (6)
Forward pass
Passing input through first layer.
0.39 —0.1 0.29
fpre = Whia + bnia = [—0.54] + [0.2] = {—0.34] (7)
h = relu(hpre) = {0.39} (8)

Passing the output of first layer through the second layer.
opre = Wouth + bous = 0.203 — 0.1 = 0.103 9)

_ 1
T 140103

Output o is > 0.5 so the prediction would be g = 1.
Computing loss.

0= 0(0pre) = 0.526 (10)

loss = E = % Z(y —0)? = %(0 —0.526)? = 0.138 (11)
Backpropagation

Computing the partial derivative (gradient) of error with respect to weights

(including biases) of the network. Example for wigg.
Applying the chain rule.

OE OE 0o O0pre

Owigp do Oopre Owigo

1
—:2§(y—0)2_1-—1:—(y—o)zo—y20.526 (13)

do 00 (0pre)

For = B = 7 (0pre) (1 = 0(0pre)) = 0.526(1 — 0.526) = 0.249 (14)

b o 0 h h b10
Opre _ Qwigoho + wio1hn + — ho = 0.29 (15)
w100 dw1oo

OF
Owioo

= 0.526 - 0.249 - 0.29 = 0.038 (16)

Learning rate is a parameter of the training process.
This is a very high learning rate, select to make the correction based on a single
example more evident.

nw=0.1 (17)
Weight is changed by combining gradient and learning rate so as to reduce error.
OF
Wipp = Wi00 — M =0.7—-0.1-0.038 = 0.696 (18)
w100

Partial derivatives can be reused to compute correction for the other weights in
the same layer.

OF _(97E do) 80pre
8w101 o 80 aopre 310101

=0.526-0.249-0 =0 (19)

Gradient for wig; is zero because ReLU of first layer gave hy = 0. Weight does

not change.
ok

—p

dwio1
Bias byt changes in the same way of weights, as it is just a weight with constant
input equal to one.

OE OE 0o 'aopre

=-11-01-0=-1.1 (20)

*
Wip1 = Wio01

- = =0.526-0.249-1=10.131 21

8b10 do 80pre ablo ()
ok

bio = b1 — i — = —0.1—0.1-0.131 = —0.113 (22)
0b1g

We compute hidden layer gradients, using chain rule.

3E _8£ 3h0 ahpre,O
Owgop Ohoy Ohpreo Owooo

(23)

We can reuse gradients from output layers.

OB _ 9B 90 oy
8}10 N do 8opre 8h0

ReLLU derivative on non-negative values is 1.
Ohg

= 0.526-0.249 - w19 = 0.526-0.249-0.7 = 0.092 (24)

= 1 25
ahpre,() ()
ahpre 0

=z o= =0.9 26
Do 0 (26)
oF

= 0.092-1-0.9=0.082 (27)

Owooo

Weight update.

*
Wooo = Wo00 — Na

)

Wo00

=0.2-0.1-0.082 =0.191

Same goes for all other weights and biases for the first layer.

Note that:

OE _OE 00 Oope
Ohy 0o Oopre Ohy

Let’s compute all remaining gradients.

oF
Owoo1
oF
Owooz2
OF
Owo1o
OF
Owo11
OF
Owo12
OF
Oboo
OF
Obo1

OF Ohy Ohpre,0
dhg Ohpre,0 " Bwoor
OE Ohy Ohpre,0
dhg Ohpre,0 " woos
OE Ohy Oy, 1
ohy Ohpre,1 " dwono
OE Ohy Oy, 1
87/11 . 3hpre,1 . Owo11
OE Ohy Ohpre,1
Ohy Ohpre,1 " Oworz
OE 0hy Ohpre,0
dhg Ohpre,0 ~ 9boo

OE 0hy Ohpe,1
Ohy Ohpren Oboy

=0.092-1-0.2=0.018

=0.092-1-0.5=0.046

=-0.144-0-09=0

=-0.144-0-02=0

=-0144-0-05=0

=0.092-1-1=0.092

=-0144-0-1=0

Update of weights and biases.

*
Woo1
*
Wop2
.
Wo10
*k
Wo11
*k
Wo12
*
boo

*
bOl

OF
woor — frg = ~1.2-0.1-0.018 = —1.202

oE

Woo ~ P — = 0.9 —-0.1-0.046 = 0.895

=—-05-01-0=-0.5

Wo10 —

-12-01-0=-1.2

g
S
-
I
=
Q
g
S
=
I

oF
we12 — M81U012 =03-01-0=0.3

OF
boo — iz — = 0.1 = 0.1-0.092 = ~0.109

E
=02-01-0=0.2

bo1 — M78b01

We have made small corrections. Is there a reduction in error?

= 0.526-0.249-w19; = 0.526-0.249-—1.1 = —0.144

(28)

Lets’ repeat the forward pass.

h*

pre

loss™

Whia® + bpig = [

relu(

W*

out

o(o

E*

pre

" 0.27
h‘pre) = [0 :|

h* 4 b%,, = 0.188 — 0.113 = 0.075

)

1
2

0.379 —-0.109] | 0.27
—0.54 02 | |-0.34

B 1
T 14 e 0075

1
D (i —0})” = 5(0 - 0.518) = 0.134

%

=0.518

|

(48)

Yes, we moved our prediction a bit closer to the correct one and we reduced the

error.

Repeating these steps more times (and with more examples) will properly fit

the network.

