Forward and backward pass in a neural network
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This is a step by step example of performing the forward and backward pass on
a neural network.

Network
We will work with a simple two-layers network.
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Figure 1: Network and flow of computation

First layer, two neurons with bias, ReL.U activation (ReLU(z) = max(0, z)).
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Second layer (output layer), one neuron with bias, sigmoid activation (o(x) =

1+i*r)'

Wout = [w100 wio1] = [0.8 —-1.1] (3)
bout = blO =-0.1 (4)



Data

Training example, input vector and expected output.
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Forward pass
Passing input through first layer.
0.39 —0.1 0.29
fpre = Whia + bnia = [—0.54] + [ 0.2 ] = {—0.34] (7)
h = relu(hpre) = {0.39} (8)

Passing the output of first layer through the second layer.
opre = Wouth + bous = 0.203 — 0.1 = 0.103 9)
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Output o is > 0.5 so the prediction would be g = 1.
Computing loss.

0= 0(0pre) = 0.526 (10)

loss = E = % Z(y —0)? = %(0 —0.526)? = 0.138 (11)
Backpropagation

Computing the partial derivative (gradient) of error with respect to weights

(including biases) of the network. Example for wigg.
Applying the chain rule.
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do 00 (0pre)

For = B = 7 (0pre) (1 = 0(0pre)) = 0.526(1 — 0.526) = 0.249  (14)
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= 0.526 - 0.249 - 0.29 = 0.038 (16)

Learning rate is a parameter of the training process.
This is a very high learning rate, select to make the correction based on a single
example more evident.

nw=0.1 (17)
Weight is changed by combining gradient and learning rate so as to reduce error.
OF
Wipp = Wi00 — M =0.7—-0.1-0.038 = 0.696 (18)
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Partial derivatives can be reused to compute correction for the other weights in
the same layer.
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Gradient for wig; is zero because ReLU of first layer gave hy = 0. Weight does

not change.
ok

—p

dwio1
Bias byt changes in the same way of weights, as it is just a weight with constant
input equal to one.
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bio = b1 — i — = —0.1—0.1-0.131 = —0.113 (22)
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We compute hidden layer gradients, using chain rule.
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We can reuse gradients from output layers.
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ReLLU derivative on non-negative values is 1.
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= 0.526-0.249 - w19 = 0.526-0.249-0.7 = 0.092 (24)
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Weight update.
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Same goes for all other weights and biases for the first layer.

Note that:
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Let’s compute all remaining gradients.
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Update of weights and biases.
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We have made small corrections. Is there a reduction in error?

= 0.526-0.249-w19; = 0.526-0.249-—1.1 = —0.144

(28)



Lets’ repeat the forward pass.
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Yes, we moved our prediction a bit closer to the correct one and we reduced the

error.

Repeating these steps more times (and with more examples) will properly fit

the network.



