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The origins
Neural networks (NN) are called "Neural" because their first formulation was 
inspired to the biological structure of the brain of animals.

Dendrites collect signals from
terminal of other neurons that 
are connected by synapses.

Depending on the collected 
signals  a neuron can itself
send a signal to other neurons
through its axon.
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The origins
An artificial neuron:
● takes in input a vector of values
● combines them linearly with a weighted sum (pre-activation)
● fires a signal using a non-linear activation function f

o = f(𝛴xi wi )

The parameters of the model (that are fit at learning time) are thus the 
vector of |i| weights (one for each of the|i| input values).

The activation function is a non-linear transformation.



Neural Network
A layer* in a network is a set |j| of neurons, i.e., a 
|i|·|j| matrix of weights (and biases).

It produces as output a vector of length |j|.

The output of a layer is passed to its activation function and the result 
become the input of the next layer (or the output if the layer is the last 
one).

Without the nonlinearity introduced by the activation function, the network 
would collapse into a simple linear transformation.

*This is a dense layer, also called fully-connected 
layer. Other type of layers exist as we will see later.

https://commons.wikimedia.org/wiki/File:Multilayer_Neural_Network.png


Bias
A neuron usually have a bias value, i.e., a constant 
value that is added to pre-activation.

Bias is not constant with respect to the learning 
process, it is a parameter that is fitted exactly like 
all the others.

Bias can be seen as the weight of an additional 
input that is constantly one.

Bias enables to offset the (linear) pre-activation 
value with respect to an all-zero input, similarly to 
the intercept value of the line equation.



Activation functions

https://en.wikipedia.org/wiki/Activation_function


Forward propagation
The forward propagation (forward pass) is the process that transforms some 
input data elaborating it through the levels of a neural network until some 
output is produced.

Forward pass on a neural network with a two-neurons hidden layer with relu 
activation and a single-neuron output layer with sigmoid activation.



Training a Neural Network
Weights in the matrix are initialized randomly (or with pre-trained values). 
Weights must differ to break symmetry.

Training data is passed into the network (forward pass).

The output of the network is compared with the expected output (true label in 
training data), computing the error the network made with respect to a loss 
function.

Correction is made by means of backpropagation and gradient descent, 
changing each weight so as to reduce the error. 

https://machinelearning.wtf/terms/symmetry-breaking/
https://en.wikipedia.org/wiki/Backpropagation
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


Gradient descent
The idea of gradient descent applied to NNs is pretty simple:

● The derivative df(x)/dx of a function f(x) indicates its slope.
○ df(x)/dx>0 means that a local increase/decrease of x increases/decreases f(x)
○ df(x)/dx<0 means that a local increase/decrease of x decreases/increases f(x)

● If we take as f(x) the error function (loss) of the network and as x a 
weight of the network, by computing the derivative we can determine 
how to change the weight so as to decrease the error.

For this to work it is necessary that all involved computations are 
differentiable.



Backpropagation
Computing the derivative of all the parameters of a deep network can be 
made efficient by 

● exploiting the chain rule of derivatives and 

● backpropagating gradients, i.e., starting the computation of gradients 
close to the error function and reusing such computations for gradients 
of elements that are more distant (thus navigating the network 
backward).

Step by step training of a network with backpropagation.

Visual demo

https://en.wikipedia.org/wiki/Chain_rule
https://drive.google.com/file/d/1ulFBqWna3Vg6JV75UlUVYb-bfDNQ0z9Q/view?usp=sharing
https://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=gauss&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=2&seed=0.68534&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


Deep Learning
In 2012 AlexNet won the ImageNet image classification competition by a large 
margin, by using NN.

Their network was a very large (and deep, for the standard of the time) one.

It revived NNs exploiting to two new factors: Big data and GPU.

http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf


Convolutional Layer
A convolutional layer in a NN is 
composed by a set of filters.
● A filter usually has a many 

dimensions as the data type it is 
applied to.

○ Images use 2D filters, text 1D.

● A filter combines a "local" selection 
of input values into an output 
value.

● All filters are "sweeped" across all 
input.

Images from "A guide to convolution 
arithmetic for deep learning" Vincent 
Dumoulin, Francesco Visin

https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285


Convolutional Layer
● Filters have additional parameters that 

define their behavior at the start/end 
of documents (padding), the size of 
the sweep step (stride), the eventual 
presence of holes in the filter window 
(dilation).

● During training each filter specializes 
into recognizing some kind of relevant 
combination of features.

● CNNs work well on stationary feats, 
i.e., those independent from position. Images from "A guide to convolution arithmetic for 

deep learning" Vincent Dumoulin, Francesco Visin

https://keras.io/layers/convolutional/#conv1d
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285


A pooling layer aggregates (max, average) output of 
groups of units into a single value for the next layer.

● It reduces the number of parameters of the model 
(downsampling)

● It contrasts overfitting.

● It add robustness to local variations (translation)

● It is used to convert variable length inputs, e.g., from 
CNNs, to the have the fixed length, thus enabling 
connecting segments of networks that produce output 
of variable size to layers with fixed-size input.

Pooling
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A dropout layer randomly hides output of units 
from a layer to the next.

● It is a regularization technique that contrasts 
overfitting (i.e., being too accurate on 
training data and not learning to generalize).

● It can also help breaking cases of symmetry 
in the network.

Dropout



CNNs have been successfully applied on images.

● First level of a stack of CNNs capture local pixel features (angles, lines)

● Successive layers 
combine features from 
lower levels into more 
complex, less local, 
more abstract features.

[image source]

Convolutional Neural Network

http://vision03.csail.mit.edu/cnn_art/index.html
http://vision03.csail.mit.edu/cnn_art/index.html


Recurrent Neural Networks
o

A Recurrent Neural Network (RNN) is a neural 
network in which connections between units form a 
directed cycle.

Cycles allow the network to have a memory of 
previous inputs, combining it with current input.

RNNs are fit to process sequences, such as text.

Text can be seen as a sequence of values at many 
different levels: characters, words, phrases… 
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/


From feature engineering to network engineering
NN-based learning frees the knowledge 
engineer from the burden of feature 
engineering.

The layers in the NN can implicitly learn 
abstract, high-level, semantic representation 
from the raw input data.

But… the network has to be properly 
designed in order to be able to perform the 
assigned task, and the possible NN 
configurations for a task are endless.



Software 2.0
Andrej Karpathy, Director of AI at Tesla.

"The “classical stack” of Software 1.0 is what we’re all familiar with…
...It consists of explicit instructions to the computer written by 
a programmer….
In contrast, Software 2.0 is written in neural network weights."

"In the case of neural networks, we restrict the search to a continuous subset of 
the program space where the search process can be made (somewhat 
surprisingly) efficient with backpropagation and stochastic gradient descent."

https://medium.com/@karpathy/software-2-0-a64152b37c35


Software 2.0
Andrej Karpathy, Director of AI at Tesla.

"Software 2.0 is not going to replace 1.0 (indeed, a large amount 
of 1.0 infrastructure is needed… ...), but it is going to take over 
increasingly large portions of what Software 1.0 is responsible for.."

"Visual Recognition… Speech Recognition… Machine Translation… Games… 
Robotics… Databases…"

https://medium.com/@karpathy/software-2-0-a64152b37c35


Deep Learning est mort...
Yann LeCun, Director of Facebook AI Research

"...the important point is that people are now building a new kind 
of software by assembling networks of parameterized functional 
blocks and by training them from examples using some form of 
gradient-based optimization."

https://www.facebook.com/yann.lecun/posts/10155003011462143


...Vive Differentiable Programming
Yann LeCun, Director of Facebook AI Research

"An increasingly large number of people are defining the networks 
procedurally in a data-dependent way (with loops and conditionals),
allowing them to change dynamically as a function of the input 
data fed to them. It's really very much like a regular program, 
except it's parameterized, automatically differentiated, and 
trainable/optimizable..."

https://www.facebook.com/yann.lecun/posts/10155003011462143


Differentiable Programming
The backpropagation-based model of 
fitting  differentiable functions is 
moving beyond NN.

Any code that is differentiable can be 
seen as a model that can be fitted by 
back propagation.

Google Tangent: source-to-source 
debuggable derivatives in pure python.

https://github.com/google/tangent
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