INTRODUCTION TO NETWORK SCIENCE

János Kertész
janos.kertesz@gmail.com

5. SCALE FREE NETWORKS AND THE CONFIGURATION MODEL

Small world model (WS)

Degree distribution: Added links form an ER NW with prob p. If the original lattice has coordination number k_{0} we finally get for the distribiution of the total degree k a shifted Poisson distribution.
p_{k}

$$
p_{k}=e^{<k k_{0}>} \frac{<k \quad k_{0}>^{k k_{0}}}{\left(\begin{array}{ll}
k & k_{0}
\end{array}\right)!}
$$

Sharply peaked, shifted Poisson

Small world model (WS)

Summary of the WS model:

- Combines large clustering of some lattices with short average distance due to cross links
- Reflects some aspects of social networks (communities with high clustering connected by long distance links).
- It has a sharp degree distribution - in contrast with real world networks

Inhomogeneities on all scales

Wealth, fame, status etc. is unevenly distributed. Why?

The Matthew effect:
"For unto every one that hath, shall be given, and he shall have abundance: but from him that hath not shall be taken even that which he hath."

Matthew 25:29

Apostle St. Matthew (El Greco)

Inhomogeneities on all scales

Wealth distribiution:

Inhomogeneities on all scales

Inhomogeneities on all scales

"We are the 99\%"?

There is a distribution of wealth and there are people with wealth on all scales

$$
p(x) \sim x^{-a}
$$

Pareto distribution

$$
a \approx 2.5
$$

Forbes 400 (1988-2003); $x=w /<w>$

Inhomogeneities on all scales

Popularity of youtube videos

Inhomogeneities on all scales

Popularity of web pages

Distribution of pages with given \# of clicks within given period of time.

Inhomogeneities on all scales

Popularity of scientific papers

(Independent) citations are scientometric measures often used in evaluation of papers and researchers.
S. Redner, Eur. Phys. J. B 4, 131734 (1998).

Power law distributions

Remember: In percolation at criticality there is no characteristic length in the system \rightarrow no scale \rightarrow power laws.

If we have a distribution without a characteristic scale ("scale free" distribution) \rightarrow power law.

Power laws are very inhomogeneous.

No scale?
All scales!

Power law distributions

Above a certain x value, the power law is always higher than the exponential.

Power law distributions

Log-log plot
Semilog plot

Power law distributions

We measure the empirical distribution by counting the frequency. $p(x) \sim x^{-a} \quad \log p(x) \sim-a \log x$

Lin-lin
Log-log

Power law distributions

The empirical distribution is obtained by making a histogram. If equidistant binning is used, there will be much fluctuations in the tail: Use log binning!

Lin. binning
Log. binning

Power law distributions

There is still too much fluctuation in the distribution function.

$$
\sum_{x=x_{\min }}^{\infty} p(x)=1 ; \quad F(x)=P\left(x^{\prime} \leq x\right)=\sum_{x^{\prime}=x_{\min }}^{x} p\left(x^{\prime}\right)
$$

Power law distributions

If the random variable x is (quasi-) continuous, we have probability density function, denoted by $p(x)$

The probability that $a<x<b$ is then

$$
P(a<x<b)=\int_{a}^{b} p(x) d x ; \quad \int_{-\infty}^{\infty} p(x) d x=1
$$

Cumulative distribution:

$$
F(x)=P\left(x^{\prime} \leq x\right)=\int_{-\infty}^{x} p\left(x^{\prime}\right) d x^{\prime}
$$

$$
P\left(x^{\prime}>x\right)=1-F(x)=\int_{x}^{\infty} p\left(x^{\prime}\right) d x^{\prime}
$$

Power law distributions

What if $p(x)$ is power law?

$$
\begin{aligned}
& p(x)=C x^{-\alpha} \\
& F(x)=\int_{x_{\min }}^{x} p\left(x^{\prime}\right) d x^{\prime}=\frac{C}{\alpha-1}\left[x_{m}^{-(\alpha-1)}-x^{-(\alpha-1)}\right] \\
& P_{>}(x)=1-F(x)=\int_{x}^{\infty} p\left(x^{\prime}\right) d x^{\prime}=\frac{C}{\alpha-1} x^{-(\alpha-1)}
\end{aligned}
$$

If the probability density decays as a power law with an exponenent α then the cumulative distribution function $P_{>}(x)$ will also decay as a power law with an exponent $\alpha-1$.

Power law distributions

Log. binning
Slope: -a

Cumulative distribution

Slope: - (a-1)

More sophisticated methods: Clauset et al.,SIAM Review 51(4), 661-703 (2009)

Inhomogeneities in complex networks

Inhomogeneities in complex networks

Scale free networks

Networks with a degree distribution having a power law tail are called scale free networks

Internet

There are many!

Nodes: computers, routers

Links: physical lines

Scale free networks

The presence of hubs is apparent!

Scale free networks

Nodes: papers
Links: citations

$P(k) \sim k^{r}$
($\gamma \sim 3$)

Scale free networks

Collaboration network

Nodes: scientist (authors)
Links: joint publication

(Newman, 2000, Barabasi et al 2001)

Scale free networks

Actor network

Days of Thunder (1990) Far and Away (1992) Eyes Wide Shut (1999)

Nodes: actors Links: cast jointly
$\mathrm{N}=212,250$ actors $\langle k\rangle=28.78$
$P(k) \sim k^{-\gamma}$
$\gamma=2.3$

Scale free networks

Social networks

Pussokram.com online dating community;
512 days, 25,000 users.
Nodes: online user
Links: email contact

Kiel University log files
112 days, $\mathrm{N}=59,912$ nodes

Ebel, Mielsch, Bornholdtz, PRE 2002.

Holme, Edling, Liljeros, 2002.

Scale free networks

Network of sexual contacts

Nodes: people (Females; Males)
Links: sexual relationships

4781 Swedes; 18-74; 59\% response rate.

Scale free networks

Metabolic network

Bacteria

Organisms from all three domains of life are scale-free!

$$
\begin{aligned}
& P_{i n}(k) \approx k^{-2.2} \\
& P_{o u t}(k) \approx k^{-2.2}
\end{aligned}
$$

Scale free networks

Newwork	Size	(k)	κ	$\gamma_{\text {sus }}$	7 im
WWw	325729	4.51	900	2.45	2.1
WWW	4×10^{7}	7		2.38	2.1
WWw	2×10^{6}	7.5	4000	2.72	2.1
WWW, site	260000				1.94
Internet, domain*	$3015-4389$	3.42-3.76	30-40	2.1-2.2	2.1-2.2
Internet, router*	3888	2.57	30	2.48	2.48
Internet, router*	150000	2.66	60	2.4	2.4
Movie actors*	212250	28.78	900	2.3	2.3
Co-authors, SPIEES*	56627	173	1100	1.2	1.2
Co-authors, neura**	209293	11.54	400	2.1	2.1
Co-authors, math.*	70975	3.9	120	2.5	2.5
Sexual contacts*	2810			3.4	3.4
Metabolic, E. coll	778	7.4	110	2.2	2.2
Protein, S. cerex.*	1870	2.39		2.4	2.4
Ythan estuary*	134	8.7	35	1.05	1.05
Silwood Park*	154	4.75	27	1.13	1.13
Citation	783339	8.57			3
Phone call	53×10^{6}	3.16		2.1	2.1
Words, co-occurrence ${ }^{*}$	460902	70.13		2.7	2.7
Words, synonyms*	22311	13.48		2.8	2.8

Networks:

The exponents vary from system to system. Most are between 2 and 3

Properties of power law distributions

$p_{k}=C k$

$C \sum_{k=1}^{\infty} k^{-\gamma}=1$
$C=\frac{1}{\sum_{k=1}^{\infty} k^{-\gamma}}=\frac{1}{\zeta(\gamma)}$
$\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots \quad s \in \mathbb{R}, \quad s>1$
Riemann Zeta function
$p_{k}=\frac{k}{()}$
for $k>0$ (i.e. we assume that there are no disconnected nodes in the network)

Properties of power law distributions

In continuous formalism:

$$
p(k)=C k^{-\gamma} \quad k=\left[K_{\min }, \infty\right)
$$

$$
\int_{k_{\min }}^{\infty} p(k) d k=1
$$

$$
C=\frac{1}{\int_{K_{\min }}^{\infty} k^{-\gamma} d k}=(\gamma-1) K_{\min }^{\gamma-1}
$$

$$
p(k)=(\gamma-1) K_{\min }^{\gamma-1} k^{-\gamma}
$$

Since a distribution has to be normalized, $\gamma>1$

Properties of power law distributions

m-th moment of the degree distribution:

$$
p(k)=(\gamma-1) K_{\min }^{\gamma-1} k^{-\gamma}
$$

$$
k=\left[K_{\min }, \infty\right)
$$

$$
<k^{m}>=(\gamma-1) K_{\min }^{\gamma-1} \int_{K_{\min }}^{\infty} k^{m-\gamma} d k=\frac{(\gamma-1)}{(m-\gamma+1)} K_{\min }^{\gamma-1}\left[k^{m-\gamma+1}\right]_{K_{\min }}^{\infty}
$$

$$
\text { If } m-\gamma+1<0: \quad<k^{m}>=\frac{(1)}{(m \quad+1)} K_{\min }^{m}
$$

If $m-\gamma+1>=0$, the integral diverges.
For a fixed y this means that all moments with $\quad m>=\gamma-1$ diverge.

Properties of power law distributions

Most degree exponents are smaller than $3 \rightarrow$ $<k^{2}>$ diverges!!! $\quad \sigma_{k}=\left(<k^{2}>-<k>^{2}\right)^{1 / 2} \rightarrow \infty$

Due to the huge fluctuations empirical <k> looses meaning as an estimator.

Properties of power law distributions

Finite scale free networks
(real networks are always finite)
There will be a maximum degree: $K_{\max }$
$\int_{K_{\max }}^{\infty} p(k) d k \approx \frac{1}{N}$
The probability to have a node with degree larger than $K_{\text {max }}$ should not exceed the prob. to have one node, i.e. $1 / \mathrm{N}$ fraction of all

$$
\int_{K_{\max }}^{\infty} p(k) d k=(\gamma-1) K_{\min }^{\gamma-1} \int_{K_{\max }}^{\infty} k^{-\gamma} d k=\frac{(\gamma-1)}{(-\gamma+1)} K_{\min }^{\gamma-1}\left[k^{-\gamma+1}\right]_{K_{\max }}^{\infty}=\frac{K_{\max }^{\gamma-1}}{K_{\max }^{\gamma-1}} \approx \frac{1}{N}
$$

$$
K_{\max }=K_{\min } N^{\frac{1}{1}}
$$

Distances in scale free networks

How do Kevin Bacon, Erdős, etc. games work?

These are scale free networks
Find a path to a hub (usually short) \rightarrow
Find the path to the target (also short)
Due to the presence of hubs, scale free networks are automatically small worlds!

The mechanism is different from that of the ER or the Watts-Strogatz model.

Distances in scale free networks

$\underset{\substack{\text { Small } \\ \text { World }}}{\substack{\text { Ultra- } \\ \text { mall } \\ \text { World } \\<l>\sim}}\left\{\begin{array}{lc}\text { const. } & \gamma=2 \\ \frac{\ln }{\ln \ln N} \\ \ln (\gamma-1) & 2<\gamma<3 \\ \frac{\ln N}{\ln \ln N} & \gamma=3 \\ \ln N & \gamma>3\end{array}\right.$

The second moment of the distribution is finite, thus in many ways the network behaves as a random network. Hence the average path length follows the result that we derived for the random network model earlier.

Degree of the biggest hub is of order $\mathrm{O}(\mathrm{N})$. Most nodes can be connected within two layers of it, thus the average path length will be independent of the system size.

The average path length increases in a double log manner so it is much slower than logarithmic. In a random network all nodes have comparable degree, thus most paths will have comparable length. In a scale-free network the vast majority of the path go through the few high degree hubs, reducing the distances between nodes.

Some key models produce $\gamma=3$, so the result is of particular importance for them. This was first derived by Bollobas and Riordan for the network diameter in the context of a dynamical model, but it holds for the average path length as well.

Scale free networks: summary

<k> diverges

Ultra small world behavior

Regime full of anomalies...
The scale-free behavior is relevant

Behaves like a random network

Scale free networks: summary

Practical remarks:

- The tail of the distribution follows often a power law causing divergence of the moments
- Since the low k regime "does not matter" and the network is always finite, we usually have a lower and an upper cutoff for the power law (in slang: scaling)

A form which reflects both cutoffs: $P(k) \sim\left(k+k_{0}\right) \quad \exp \left(\frac{k+k_{0}}{k}\right)$

Properties of large real world networks

- Small worldness
- High clustering
- Scale free degree distribution

Erdős-Rényi: Small world, low clustering, narrow degree-distribution
Watts Strogatz: Small world, high clustering narrow degree distribution

How to construct models with prescribed properties?

In concreto: With a given degree distribution?

Configuration model

How to generate scale free (power law) degree distribution?

Instead of taking a degree distribution we make a model for a prescribed set of degrees. Let us have N nodes, where the i-th has degree k_{i}.

Configuration model

The degrees of the nodes are indicated by "half links" or "stubs".

The network is constructed then by pairwise connecting the stubs. One possible set of pairings:

This figure indicates the algorithm too.
Clearly, one needs even number of stubs to be able to pair them.

Configuration model

This is a model for a degree sequence and not for a (given, theoretical) degree distribution. However, if N is large, the degree sequence taken from the distribution can be considered as representative. l.e., we generate a sequence from the distribution and from that the network.

The degree sequence itself defines an ensemble. For a given degree sequence, all possible pairings have the same probability. As the pairings are entirely random, there will be no correlations. (E.g., no (dis)assortativity). "Most random network with a given degree sequence."

Configuration model

What is the weight of a given network?
The number of permutations at a node is: k_{i} !
The total number of possible permutations in the network is then $N_{\text {perm }}\left(\left\{k_{i}\right\}\right)={ }_{i} k_{i}$!

Since the degree sequence is constant in the ensemble, this means that all networks we construct have the same weight.

There is a little problem here!

Configuration model

Problems: self-links and multiple links

These are usually unwelcome. (We want to have a simple graph.) Moreover, they influence the number of permutations, e.g., exchanging the ends of a self link is not a new permutation; similarly, we over-count if there are multiple links.

Prohibit such pairings?

Configuration model

No!
This would mess up the statistics and even block the construction (what if there are no other possibilities than those we want to avoid?!).

If we are interested in large networks then this is usually a minor problem. Why?

For nice degree distributions the probability of selflinks and multiple links decreases rapidly with the size N of the system! We can simply disregard them.

Caution is needed for power law distributions with exponents smaller than 3 .

Configuration model

What is the expected number $L_{\text {self }}$ self edges?
The probability of having a self edge at node i with degree k_{i} is (we choose two stubs at i for all $2 L-1$ trials)

$$
p_{i i}=\frac{k_{i}\left(k_{i}-1\right) / 2}{2 L-1} \approx k_{i}\left(k_{i}-1\right) / 4 L
$$ from which follows:

$$
L_{\text {self }}=\sum_{i} p_{i i}=\sum_{i} k_{i}\left(k_{i}-1\right) / 4 L=\sum_{i} k_{i}\left(k_{i}-1\right) / 2 N\langle k\rangle=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{2\langle k\rangle}
$$

For finite first and second moments $L_{\text {self }}$ remains finite even in the $N, L \rightarrow \infty$ limit \rightarrow it becomes negligible. (Similar reasoning for multiple links.)
What if $2<\gamma<3$? We had $K_{\max }=K_{\min } N^{\frac{1}{\gamma-1}}$
$\left\langle k^{2}\right\rangle \sim K_{\max }{ }^{3-\gamma} \sim N^{\frac{3-\gamma}{\gamma-1}} \Rightarrow \lim _{N \rightarrow \infty} L_{\text {self }} / N \rightarrow 0 \quad$ Still OK

Configuration model

What is the probability $p_{i j}$ in the config. model to have a link between node i and j ?

Let us take a stub from node i. It has $2 L-1$ possible pairing points. Out of these k_{j} are from node j. Thus the probability of "landing" at j is $k_{j} /(2 L-1)$. But there are k_{i} different possibilities to chose the starting stub at i. The final result is then:

for large networks

Configuration model

randomly chosen

What is the probability that a node, which we arrive at from a randomly chosen
node will have the degree k if the degree distribution is p_{k} ?
If i has degree k the probability of landing there is $k /(2 L-1) \approx k / 2 L$ (for large networks). There are $N p_{k}$ nodes which have k degrees. Thus the probability that we land at any of them starting from an arbitrary node is
$p_{\mathrm{nn}}(k)=\frac{k}{2 L} \quad N p_{k}=\frac{k p_{k}}{\langle k\rangle}$ proportional to $k p_{k}$ not to p_{k} only!

Configuration model

Let us assume that a friendship network can be described by the configuration model. What is the average number of friends of your friends.

$$
\langle k\rangle_{\mathrm{nn}}=\sum_{k} k p_{\mathrm{nn}}(k)=\sum_{k} \frac{k^{2} p_{k}}{\langle k\rangle}=\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}
$$

The average degree is just $<k>$. The above formula tells that $\left.\langle k\rangle_{\text {nn }}\right\rangle\langle k\rangle$ because:

"Your friend has more friends than you do."

Configuration model

Collaboration networks and Internet:

Config. model is not exact (see last column) but captures an important aspect.
What is the probability q_{k} that an arbitrary node is connected to another one with k degrees in excess to the link between them? (Excess degree distribution)

$$
q_{k}=p_{\mathrm{nn}}(k+1)=\frac{(k+1) p_{k+1}}{\langle k\rangle}
$$

Configuration model

Global clustering coefficient C :
$q_{k_{i}} q_{k_{j}}$ will be the distribution that nodes i and j have k_{i} and k_{j} excess degrees, respectively. Since the probabiliy of having a bond between two nodes having k_{i} and k_{j} free degrees is $k_{i} k_{j} / 2 L$, we have

$$
C=\sum_{k_{i}, k_{j}=0}^{\infty} q_{k_{i}} q_{k_{j}} \frac{k_{i} k_{j}}{2 L}=\frac{1}{2 L}\left(\sum_{k=0}^{\infty} k q_{k}\right)^{2}=\frac{1}{2 L} \text { Const }=\frac{1}{N} \text { const }
$$

Configuration model

where the "const" depends on the moments of the distribution.

We see that in the large N limit the average clustering coefficient becomes small.

Most (especially social) networks have high clustering!
Three important features:

1. Short average distance
2. High clustering
3. Broad (in the tail often power law) distribution
4. Automatically fulfilled (by construction)
5. Fails

Configuration model

One might think that power law implies hubs and hubs were needed for small worldness \rightarrow configuration model with power law degree distribution will automatically be a small world.

This reasoning assumes a single component or at least a giant component (the "world", which is expected to be small).

Nothing assures a priori that there is a giant component in the configuration network with power law distribution of degrees.

Configuration model

In fact, this is not always the case. If the exponent of the power law is too large, that means the decay of the probability of finding high degree nodes is too fast, there will be only isolates.

We calculate generally for the configuration model the probability of having a giant component following the ideas we used for the ER graph.

Let u be the probability that a link does not lead to a giant (infinite) component

Configuration model

$$
u=\sum_{k=1}^{\infty} p_{\mathrm{nn}}(k) u^{k-1}=\sum_{k=1}^{\infty} \frac{k p_{k}}{\langle k\rangle} u^{k-1}
$$

$$
u=g(u)=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k p_{k} u^{k-1}
$$

Trivial solution: $u=1$ since

$$
\langle k\rangle=\sum_{k=1}^{\infty} k p_{k}
$$

Is there any other solution? (Needed for having a giant component.)
For $p_{k}=e^{-\langle k\rangle} \frac{\langle k\rangle^{k}}{k!}$ the ER result is retrieved (check!)

Configuration model

$$
u=g(u)=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k p_{k} u^{k-1}
$$

The tipping point:
$g^{\prime}(u)=1$
For $g^{\prime}(u=1)>1$ there is a giant component, because
 there is a solution $u<1$

Consequently, the probability of leading to a giant component is $1-u>0$.

Configuration model

For $g^{\prime}(u)>1$ there is a giant component, because there is a solution $u<1$. What does it mean?

$$
g^{\prime}(u)=\frac{d}{d u}\left\{\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k p_{k} u^{k-1}\right\}=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k(k-1) p_{k} u^{k-2}>1
$$

At $u=1$:

$$
\begin{aligned}
& \frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k(k-1) p_{k}=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k^{2} p_{k}-\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k p_{k}>1 \\
& \frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k^{2} p_{k}-\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k p_{k}=\frac{1}{\langle k\rangle}\left\langle k^{2}\right\rangle-\frac{1}{\langle k\rangle}\langle k\rangle>1
\end{aligned}
$$

From which the result for random network follows: There is a giant component if
$\left\langle k^{2}\right\rangle \quad 2\langle k\rangle>0$
Molloy-Reed 1995

Configuration model

$\left\langle k^{2}\right\rangle 2\langle k\rangle>0$This is the general Molloy-Reed criterion for the existence of a giant component.

What does it mean for power law degree distributions? Usually we have only a power law in the tail. The small k values do not matter from the point of view of the asymptotic behavior but they influence the values of the moments.
If $p_{k} \sim A k{ }^{-r}$ at least asymptotically, the second moment diverges for $\gamma \leq 3$. Therefore for these values the MR inequality is automatically satisfied. In fact, one can show that for small enough γ there is only one component in an infinite system. (The prob. to find an isolate $\rightarrow 0$.)

Configuration model

Assuming power law from $k=1$.

Configuration model

Low clustering is a problem!

Can we take the brute force approach as for the degree distribution?

Yes!

Instead of nodes with stubs only, we take nodes with stubs and corners of triangles!
$P_{s t}$ will be the probability of having a node with s stubs and t corners. (The total number of stubs must be a multiple of 2 , that of the corners a multiple of 3.)

Configuration model

Of course, the total degree is given from contributions by the stubs and the corners (with multiplicity 2).

$$
p_{k}=\sum_{s, t=0}^{\infty} p_{s t} \delta(k, s+2 t)
$$

$$
\delta(a, b)=\left\{\begin{array}{l}
1 \text { if } a=b \\
0 \text { otherwise }
\end{array}\right.
$$

(Kronecker delta)
Several properties can be calculated, e.g., percolation threshold:

$$
\frac{\left\langle s^{2}\right\rangle}{\langle s\rangle}-2\left[\left[2 \frac{\left\langle t^{2}\right\rangle}{\langle t\rangle}-3\right]=2 \frac{\langle\Delta t\rangle^{2}}{\langle s\rangle\langle t\rangle}\right.
$$

This replaces Maloy-Reed

Configuration model

Further refinements are possible. E.g., correlations between degree and clustering (which indeed do exist).

In principle, whenever we discover a new feature of a network, we may incorporate that into the random network model!

What can be learned from such a model?

Homework

In a regular graph all degrees k are the same. Generate with the configuration model random regular graphs with $k=1,2$, and 3
Visualize and characterize the graphs.

