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Hierarchical Clustering

Dino Pedreschi, Riccardo Guidotti

Revisited slides from Lecture Notes for Chapter 7 “Introduction to Data Mining”, 2nd
Edition by Tan, Steinbach, Karpatne, Kumar

UNIVERSITA DI PISA



Hierarchical Clustering

* Produces a set of nested clusters organized as a hierarchical tree

* Can be visualized as a dendrogram
* A tree like diagram that records the sequences of merges or splits
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Dendrograms
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Strengths of Hierarchical Clustering

* Do not have to assume any particular number of clusters

* Any desired number of clusters can be obtained by ‘cutting’ the dendrogram
at the proper level

* They may correspond to meaningful taxonomies

* Example in biological sciences (e.g., animal kingdom, phylogeny
reconstruction, ...)



Hierarchical Clustering

* Two main types of hierarchical clustering
* Agglomerative:
e Start with the points as individual clusters

» At each step, merge the closest pair of clusters until only one cluster (or k
clusters) left

* Divisive:
» Start with one, all-inclusive cluster
At each step, split a cluster until each cluster contains an individual point (or
there are k clusters)
* Traditional hierarchical algorithms use a similarity or distance matrix
* Merge or split one cluster at a time



Agglomerative Clustering Algorithm

* Most popular hierarchical clustering technique

e Basic algorithm is straightforward
Compute the proximity matrix
Let each data point be a cluster
Repeat
Merge the two closest clusters
Update the proximity matrix
Until only a single cluster remains
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 Key operation is the computation of the proximity of two clusters

 Different approaches to defining the distance between clusters distinguish the different
algorithms



Starting Situation

e Start with clusters of individual points and a proximity matrix
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Intermediate Situation

» After some merging steps, we have some clusters
C1|C2 | C3| C4 (C5
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Intermediate Situation

 We want to merge the two closest
clusters (C2 and C5) and update the C1]C2| C3| cacCs
proximity matrix.
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After Merging

* The question is “How do we update s
the proximity matrix?” U
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How to Define Inter-Cluster Distance
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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MIN or Single Link

* Proximity of two clusters is based on the two closest points
in the different clusters

* Determined by one pair of points, i.e., by one link in the
proximity graph

* Example:

Distance Matrix:
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Hierarchical Clustering: MIN
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Strength of MIN
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e Can handle non-elliptical shapes



Limitations of MIN s e
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MAX or ComEIete Linkage

* Proximity of two clusters is based on the two most distant points in
the different clusters

* Determined by all pairs of points in the two clusters
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Hierarchical Clustering: MAX
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Strength of MAX
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* Less susceptible to noise and outliers



tations of MAX
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* Tends to break large clusters
» Biased towards globular clusters



Group Average

* Proximity of two clusters is the average of pairwise proximity
between points in the two clusters.

> _proximity(p;, p;)

pieCluster;
pj<Cluster;

| Cluster; | x| Cluster; |

proximity(Cluster;, Cluster;) =

* Need to use average connectivity for scalability since total proximity
favors large clusters
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Hierarchical Clustering: Group Average
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Hierarchical Clustering: Group Average

e Compromise between Single and Complete Link

e Strengths
* Less susceptible to noise and outliers

* Limitations
* Biased towards globular clusters



Cluster Similarity: Ward’s Method

 Similarity of two clusters is based on the increase in squared error
when two clusters are merged
 Similar to group average if distance between points is distance squared
* Less susceptible to noise and outliers

* Biased towards globular clusters

* Hierarchical analogue of K-means
e Can be used to initialize K-means



Hierarchical C : Comparison
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